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Abstract

In this paper, I introduce the theorems in Professor Hukukane Nikaido’s work, “Coincidence and some systems
of inequalities,” published in the Journal of Mathematical Society of Japan, 1959, and note the significance
of his mathematical methods on the history and the future of mathematical economics. Nikaido (1959)
may be considered a compilation of his works of the 1950’s on economic equilibrium existence problems. It
also provides, however, his further developments and attempts for mathematical methods in the theory of
mathematical economics and an algebraic (algebraic topological) methods based on results of the Vietoris
homology theory (the earliest kind of Cech-type homology theories). From Nikaido’s main mathematical
results, an analogue of Sperner’s lemma and a coincidence theorem, we may obtain a simple proof for
Eilenberg-Montgomery’s theorem for finite dimensional cases. We may also utilize such homological methods
for many generalizations of fixed point arguments on multivalued mappings in relation to Lefschetz’s fixed

point theorem.
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0.1 Introduction

In this paper, I introduce the theorems in Professor Hukukane Nikaido’s work, “Coincidence and some systems
of inequalities,” published in the Journal of Mathematical Society of Japan, 1959, and note the significance
of his mathematical methods on the history and the future of mathematical economics. Nikaido (1959)
may be considered a compilation of his works of the 1950’s on economic equilibrium existence problems. It

also provides, however, his further developments and attempts for mathematical methods in the theory of

*The manuscript is prepared for the special session of Nikaido Conference at Hitotsubashi University on March 18 and 19,
2006. Contents in Sections 2 — 6, except for the proof of Sperner’s lemma (Lemma 4.4), arguments for class # (Browder type)
mappings in Section 5, and several additional figures, have been taken from Chapter 6 of my Ph.D thesis (7).



mathematical economics and an algebraic (algebraic topological) methods based on results of the Vietoris
homology theory (the earliest kind of Cech-type homology theories). From Nikaido’s main mathematical
results, an analogue of Sperner’s lemma and a coincidence theorem, we may obtain a simple proof for
Eilenberg-Montgomery’s theorem for finite dimensional cases. We may also utilize such homological methods
for many generalizations of fixed point arguments on multivalued mappings in relation to Lefschetz’s fixed

point theorem.

As is well-known, Professor Nikaido was a great mathematician as well as an outstanding social scientist.
He had a special viewpoint on mathematical methods for the social sciences that view mathematics not as
a simple tool but as a language. Therefore, for him, mathematical economics is not a simple description of
the world using mathematical concepts but a study of the world through the language (or methods) of the

mathematician.

With each mathematical theory is associated a different way of analyzing the world. For example, there
is an important difference between the differentiable approach (research based on differential calculus) and
an approach based merely on set theoretical and/or algebraic methods in mathematical economics. Since
the concepts and methods of differential calculus are based on the theory of sets and/or algebra, the former
includes analytic works that result from seeing the world as a differentiable object, and the latter include
synthetic attempts or methods to construct models that are more appropriate to describe our real world.
The results of the former are always based on the concept of differentiability so that it is more desirable to
reexamine them under more primitive concepts, like finiteness, sequences, or limits under the set theoretical

and/or algebraic methods.

In this sense, it is always significant for the theory of mathematical economics to use more primitive
mathematical concepts together with more general or fundamental mathematical methods. Methods in
mathematical economics in the 1950’s and 1960’s based on rigorous set theoretical arguments and general
topology, e.g., 7), 7), etc., have, therefore, important meaning for the history of social science as a new basic

(fundamental) language for describing the society.

I introduce here some of the most general (and fundamental) theorems of Professor Nikaido from that
era, an analogue of Sperner’s lemma and a theorem for the coincidence of mappings (?, Lemma 1, Theorem
3). The analogue of Sperner’s lemma may be considered to represent the essential part of fixed point or
coincidence theorems in finite dimensional vector spaces, as does Sperner’s lemma. The lemma may be useful
as a proof of the theorem on coincidence points of mappings on general compact Hausdorff spaces with or
without vector space structure. The result may also be directly used for economic equilibrium problems on
general compact Hausdorff spaces. Arguments are based on an abstract homology theory of the Cech-type

that is founded on more primitive algebraic concepts than the singular homology theory.

0.2 Vietoris and Cech Homology Groups

Let X be a compact Hausdorff space. Cover(X) denotes the set of all finite open coverings of X. Remember
that for each covering 90,9t € Cover(X), we write DT DT if D is a refinement of MT and MWt x* N if N
is a star refinement of 9t (Figure 1). It is also important to recall that for each covering Mt € Cover(X),
covering D € Cover(X) such that DT <* ML exists, hence relation < directs set Cover(X). Since this is a
crucial property, I will write down here a simple sketch of a direct proof for our special case, though the

result may be seen in the literature, e.g., 7, p.47).
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Figure 1: Star Refinements

Lemma 0.2.1: Let X be a compact Hausdorff space. For each covering Mt € Cover(X), a star refinement
M € Cover(X) of M, D™ M, exists

PROOF : Suppose that X is covered by family 9 M, ..., M,,} (m > 2). First we can see under the
condition of normal space that M; and M5 include closed sets C7 and Cs respectively, together with open sets
Uy € Cy and Uy C Cy such that X C Uy UUU,;~3 M;. Tt is clear that family Dy = {U1 N My, UsN My, My '\
Ca, My \ C1} satisfies VN € Dy, the star of N in 91, St(N,9%) = U{N'|INNN"#£0,N" € DNy} is a subset
of My or My, and Dy U {Ms, ..., M,,} is a covering of X. Next assume that for covering {M,..., M, _1},
family D%,,_; exists such that VN € 91,,_1, the star of N in DM,,_1, St(N,D,,_1) is a subset of M; for some
i=1,...,n—1, and M1 U{Mp, My y1,..., M} is a covering of X. Then for M,, (again under the
condition of normal space,) we may chose subsets V,, ¢ D,, C U,, C C,, of M, such that V,, and U,, are
open, D, and C,, are closed, and D,,—1 U {V,,, Myyt1,..., My} is a covering of X (Figure 2). Define 91,
as M, = {N\C,|N € M, 1} U{NNM,\ Dy|N € D,,_1} U{U,}. Tt is easy to verify that I, satisfies

Figure 2: Construction of a Star Refinement

that VN € D1, the star of N in O, is a subset of M; for some i =1,...,n, and M, U{M41,..., M} is a

covering of X. Since the process may be continued to n = m, we may obtain a star refinement of 9)%. ]
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Cech Homology

The nerve of the covering Mt of X, X (M), is an abstract complex such that the set of vertices of X¢(9N)
is M and n-dimensional simplex 6™ = MM - - M, belongs to X¢(9M) if and only if (., M; # 0. We
call an n-dimensional simplex ¢™ in X¢(9) an n-dimensional Cech IM-simplex, (or simply, Cech simplex,
n-dimensional Cech simplex, Cech 9-simplex, etc., as long as there is no fear of confusion). X¢(9M) is also
called the Cech 9-complex. In the following, we assume that every Cech 9t-complex is oriented. Since
I is a finite covering, we may identify X¢(9MT) with a polyhedron (a realization) in a finite dimensional
Euclidean space.

If p: DT — M is a mapping such that for all N € D, N C p(N) € M, we say that p is a projection. It is
clear that if 91 is a refinement of 901, then for each Ny, Ny € D, N1 N Ny # () implies that p(N1) Np(Na) # 0.
Hence, the vertex mapping, projection p, induces uniquely a simplicial map X¢(Dt) > NiNy--- N +—
p(N1)p(N2) -+ - p(Ny) € X°(9N) which is also denoted by p and called a projection.

An n-dimensional Cech 9M-chain, ¢*, is an entity which is represented uniquely as a finite sum of Cech

Mt-simplexes,

k
"= aio}, (of,...,01 € X°(9M)),
i=1

where coefficients o, ..., oy are taken in a field F. The set of all n-dimensional Cech 9i-chains, Ce (o),
may be identified, therefore, with the vector space over F' spanned by elements of the form 1™, where o”
runs through the set of all n-dimensional Cech 9)t-simplexes.

Let us consider the boundary operator among chains, 9,, : C&(91) — C5_;(9M), for each n, as usual, i.e.,

the linear mapping,

an : MOMl e Mn — Z(*l)ZMOMl e Mz s Mn7
=0

where the series of vertices with a circumflex over a vertex means the ordered array obtained from the
original array by deleting the vertex with the circumflex and for all n < 0, it is supposed that CS(9N) =
0. Then, the set of all n-dimensional Cech Dt-cycles, ZS(M), and the set of n-dimensional Cech -
boundaries, BS (M), may be defined as usual, so that we obtain the n-th Cech 9t-homology group, HE(IR),
for each n. For each Dt and dimension n, simplicial map p induces chain homomorphism p2*** so
that (C5 (M), P ) meCaer(X)s (Z5 (), D7) an meConer(x)> and (By (9M), "™ ) an, meConer (), form inverse
systems.

Note that if DTN, and if p : DT — M and p’ : M — M are projections, two simplicial maps,
p and p/, are contiguous, i.e., for each Cech Dt-simplex, NoNj --- Ny, images p(No)p(Ny)---p(Ng) and
p'(No)p'(N1)---p'(Ng) are faces of a single simplex.!  Since two contiguous simplicial maps are chain

2

homotopic, p and p’ induce the same homomorphism, p7i™ : HS (M) — HE (M) for each n. The limit for

the inverse system, (HS (), p2i™), on the preordered family, (Cover(X), <),

HE(X) = lim HE (),

is the n-dimensional Cech Homology group.

Mndeed, it is clear that the intersection (nf:() p(N;)) N (mf:() p’'(N;)) D ﬂle N; # 0. Hence, the array obtaine(} by
deleting all of the second occurence for the same vertex from the series, p(No)p(N1) - - - p(Ng)p' (No)p' (N1) - - - p' (Ng), is a Cech
M-simplex.

2See for example ?, p.164). If we are allowed to define piecewise linear extensions p and 7’ of p and p’, respectively, it may
also easy to find a homotopy bridge among p and p’.
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Under the definitions of the homology group and the inverse limit, an element of HS(X) may be considered,
intuitively, as an equivalence class of a sequence of Cech cycles, {z"(M) € ZS(IM) : M € Cover(X)},
such that for each M, M € Cover(X) satisfying that DT <M, we have 2" (M) ~ p2*™ (2" (D)), where the
equivalence relation is defined relative to the class of Cech boundaries, i.e., 2™ () —p2*™ (2™ (M)) € BE(M).3

Vietoris Homology

An n-dimensional Vietoris simplex is a collection of n + 1 points of X, zox1---x,. A Vietoris simplex,
0 = Loy - Ty, is said to be an M-simplex if the set of vertices, {xg,z1,...,2,}, is a subset of an element
of M. The set of all Vietoris Mi-simplexes forms a simplicial (infinite) complex (Vietoris M-complex) and
is denoted by XV(9%). An orientation for n-dimensional Vietoris simplex zoz; - - x,, is a total ordering on
{zo,21,...,Zn} up to even permutations. In the following we suppose that every Vietoris 9t-complex is
oriented.

The set of all n-dimensional Vietoris 9-chain, C¥(9N), is the vector space whose elements are uniquely

represented as a finite sum of n-dimensional Vietoris $t-simplexes,
k
n n n n v
"= g aol, (of,...,0n € X°(OM)),
i=1

where coefficients a1, ...,y are taken in a field F'. We may also consider the boundary operator among

chains, 9, : CL(M) — CY_, (M), for each n, as the linear map satisfying,
n
Op : ToT1 " Ty — Z(—l)imoxl By Ty,
=0

where the circumflex over a vertex means the elimination as before, and it is supposed that C}(9t) = 0 for
all n < 0. The set of all n-dimensional Vietoris 9M-cycles, Z7 (M), and the set of n-dimensional Vietoris
Mt-boundaries, BL (M), may also be defined as usual, so that we obtain the n-th Vietoris 9t-homology
group, HY (M), for each n.

For coverings 9, M € Cover(X), it is clear that (M xMW) = (XU(M) C X?(MY)). Denote by AT :
CP (D) — CY (M) the chain homomorphism induced by the above inclusion. Then, for each n, the system of
vector spaces with mappings, (C}(9), h7™) an e coer(X), together with its cycles, (Z;, (9T), b2 ) ax meCaer(X)
and boundaries, (By, (), h2"™ ) on mecaer(x), form inverse systems. The inverse limit of the inverse system,
(Z3 () / B (M), ™) am e Coer ()

H2(X) = lim H(90),
n

is the n-dimensional (n-th) Vietoris Homology group.

An element of HY(X) may be identified with an equivalence class of a sequence of n-dimensional Vietoris
M-cycles, M € Cover(X), (an n-dimensional Vietoris cycle), {z™(9M) € Z2 (M) |Mt € Cover (X )}, such that
for each 91,9 € Cover(X) satisfying that DT < 9N, we have 2" () ~ A2 (2"(M)), where the equivalence
class is taken with respect to Vietoris 9-boundaries, i.e., 2™ (9T) — hZ*™ (2"(M)) € BL(M).4

3For more details of the Cech homology theory, see ?). For more introductory arguments, ?, Chapter 8) is also recommended.

4The concept of Vietoris homology group was originally introduced by ?) as the first homology theory of the Cech type
for metric spaces. Though the theory has been used in many researches, e.g., 7), it has not been frequently discussed as has
the more general Cech theory. The theory was extended to be applicable for cases of compact Hausdorff spaces by ?), and the
result was used in ?) to prove an analogue of Sperner’s lemma.



Vietoris and Cech Cycles

The Cech homology theory is a powerful tool to approximate the space with groups of a finite complex.
The Vietoris homology theory, on the other hand, has an intuitional advantage that we may characterize the
space directly by its elements (points). Fortunately, we may utilize both merits since the two homological
concepts give the same homology groups (see Theorem 0.2.3 below).

Before proving this, let us see the following facts on equivalences of two cycles on a simplicial complex. Since
a homology group is nothing but a set of equivalence classes of cycles, it is not surprising that homological
arguments often depend on this type of equivalence results. Let K be a simplicial complex. Suppose that
the set of vertices of K, Vert(K), is simply ordered in an arbitrary way, and let 6™ = {(ag, a1, ...,a,) be an
n-simplex (oriented by the simple order) in K. The product simplicial complex of K and the unit interval
denoted by K x {0, 1} is the family of simplexes of the form ((ao, 0), (a1,0),...,(a;,0), (a;, 1),..., (an,1)) for
each {ag,a1,...,a,) € K together with all their faces (Figure 3). The subcomplex of K x {0, 1} constructed

’ (3211)
(a,1)
R g -~

Ao

'.*-/(2:0)

Figure 3: Prism K x {0,1}

by all simplexes of the form ((ag,0), ..., (as,0)) may clearly be identified with K and is called the base of
K x {0,1}. There also exists an isomorphism between K and the subcomplex of all simplexes of the form
((ag,1),...,(an,1)), which is called the top of K x {0,1}. For each n-simplex (¢”) = (ag,...,a,) of K,
define an n + 1-chain, ®,(c™), on product simplicial complex K x {0,1} as

n

(0.1) u(0™) = S (=1V((a0,0); - (a;,0), (a, 1) -, (ans ).

§=0
Extend each ®,, to a homomorphism on C,(K) to C,(K x {0,1}). Then we can verify through direct
calculations that for each n-chain ¢ € K,

(0.2) On1Pn (") + @p10n (™) =" x 1 =" x 0 € Cph_1(K x {0,1}),

where ¢ x 1 (resp., ¢™ x 0) is the chain on the top (resp. base) of K x {0, 1} formed by replacing each vertex

of each simplex of ¢" by the vertex of the ordered pair with 0 (resp., 1). Hence, if 2" is a cycle on K,
(0.3) Ont1Pn(2") =2" x1—2" x0€ B,(K x {0,1}),
i.e.,, we have 2" x 0 ~ 2™ x 1 on K x {0,1}. Therefore, if there exists a simplicial mapping ¥ on K x {0,1}

to a certain simplicial complex L, the next lemma holds.

Lemma 0.2.2: Assume that there is a simplicial mapping ¢ on K x {0,1} to a simplicial complex L.
For two images 1,41(2% X 0) and 944+1(29 x 1) in the ¢-th chain group C,(L) of g-cycle 27 € Cy(K) (through
the induced homomorphism g1 : Cqq1(K x {0,1}) = Cy(L)), we have q11(27 x 0) ~ hg1(2% x 1) on L.
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We now see the following fundamental result.

Theorem 0.2.3: (Begle 1950a) Let X be a compact Hausdorff space. The g-th Vietoris homology group,
HY(X), is isomorphic to the corresponding Cech homology group, HS(X), for each g.

To show the above result, use the following two simplicial mappings.® Given covering 9% in Cover(X), chose
refinement T x* M, which is always possible for a compact Hausdorff space by Lemma 0.2.1. It is convenient
for the discussion below to denote one of such selections for each 9t by a fixed operator on Cover(X) as
M = M. For each M € Cover(X) and for each z € X, there are N, € *M and M, € 9 such that
x € N, and St(N,;*IM) C M,. Moreover, for each N € *I1 there is an element xy € N. Define functions

b b
Csm and Pon a8

(0.4) ¢ Vet(XU('m)) = X 3 — M, € M = Vert(X(IM))
(0.5) b Vet(Xe(m) ="M > N = 2y € X = Vat(X"(IM))

Under the definition of star refinement, it is easy to see that (%, and ¢%, are simplicial mappings. Hence,
we obtain chain homomorphisms gf;ﬂq 1 Cg(M) — Cg(M) and gol;nq 1 Ce(M) — CJ(P). As we see below,
these mappings play essential roles in characterizing relations between Vietoris and Cech homology groups.
Especially, mappings anq and ngzq induces, respectively, isomorphisms (:qu s HY(X) — Hg(X) and npiq :
H¢(X) — HY(X) (Theorem 0.2.3), and ¢%,, o ¢, (9 = *M) assures the finite dimensional character of

acyclic spaces (Theorem 0.3.2) or locally connected spaces (Theorem 0.3.4).

PROOF OF THEOREM 0.2.3 : Let v = {77(M)| € Cover(X)}, (or simply, {y7(M)}) be an g-dimensional
Vietoris cycle. For each 9t € Cover(X) and D = *0M, define z7(M) as 29(M) = (5, (74(DN)). We see (1)
that 29 = {29(M)} is a Cech cycle and (2) that the mapping ¢%, : 77+ 29 is an isomorphism on H?(X) to
HE(X).

(1) Since ¢4, : C2(M) — C5(M) is a chain homomorphism, all z9(9M) (M € Cover(X)) are cycles in
CE(9M). Hence, by definition of inverse limit, all we have to show is z9(9ty) ~ p*™2(29(My)) for each
Mto <My, Let Dy and Do be refinements of MY, and Mo, respectively, to define mappings Cffnl 4 and
Qé’ﬂzq. By Lemma 0.2.1, we can take P as P <* Dy and P <x* DNo. Note that since {77(NM)} is a Vietoris
cycle, we have hJ'* (y2(P)) ~ 79(D1) and AJ>* (y4(P)) ~ 74(N2). Hence, 27(My) = (&, ,(1(D) ~
g (13 (Y1) amd p s (21(Ia)) = P (Gl (VM) ~ I (Chyy (22 (y(B)).T Tt fol-
lows that all we have to show is (%, ,(Y*(B)) ~ pT*™2(¢5,,,(79(3B)). Let K = K (y7(P)) be the complex con-
sists of all simplexes in cycle v4(P) together with their faces. Then by Lemma 0.2.2, it is sufficient to show the
existence of simplicial map ¢ on K x {0,1} to L = X°(9) such that ¢%,  (v4(3B)) and p*+™2(¢5,,,(V1(B))
are images through the induced map 9441 : Cyy1 (K x {0,1}) — X(D) of v9(P) x 0 and v7(P) x 1, re-
spectively. For each a € Vert(K), define ¢ as ¢((a,0)) = ¢%, (a) and ¥((a,1)) = p™™2¢4, (a). For any
simplex ((ag,0),...,(a;,0), (a;,1),..., (ag, 1)) in K x {0,1}, we have a simplex aq - - ap of K = K(v7(°R)),
so that there exists P € R, ag,...,ar € P. We have to show that (Cé’ﬁl(ao), .. ,(gnl(ai), p”"l”’”(gm(ai),
cen p"’”lm%g’nz(ak)) forms a simplex in X¢(Mty). For each j, 0 < j < 4, since P <x* Ny <* My, each
% (a;) = My,, (0 < j <) includes St(Nyq,, D) for a certain Ni,, 3 a;. Hence, P which has a; and
satisfies St(P,) C N; for a certain N; € Dt must be a subset of St(Ni,,,M1) C Mig,. For each

5These mappings are defined by Begle (1950a).

6For this, Axiom of Choice is needed.

In the above, inclusion mappings hy''® and h)'?¥ might be abbreviated. Since including relation Cy(M) C Cy(M) for
each D' X D1 is obvious, these operators will be omitted henceforth as long as there is no fear of confusions.




i, 1 < j < k, since P <O <F My, <My, each 109"19”"(;’7I2 (aj) = p™™2Ms,, (1 < j < k) includes
St(Naq,,Mz) for a certain Noy, > aj. Hence, P which has a; and satisfies St(P,J8) C N, for a certain
Ny € Dty must be a subset of St(Ngaj,mg) C Mgaj so that the corresponding element under projection
Pyt of M. Therefore, we have (5, (ag) N ... N¢Y (a;) Np™ ™28, (a;) N p™™2(8, (ax) O P # 0
and (¢4, (ao), ..., 5, (a;), p™ ™28, (ai), ..., p™™2(h,, (ar)) € X°(My), i.e., 1 is a simplicial map. By the
construction of induced map 1, it is also clear that 1441 (77 x0) = Cf)’ﬂq('yq) and ¥g41 (79 x 1) = pI™ f,’tq(wq).

(2) We have to show that mapping ¢, : ZJ(X) 3 44 — 27 € ZZ(X) is one to one and onto. We shall
use three steps: (2-1) define mapping @Zq 1 Zg(X) = Z;(X), (2-2) show that the composite @Zq o (qu is the
identity, and (2-3) show that the composite g“f;* o apg* is the identity.

(2-1) Let us define a function which gives for each Mt and 29 = {29(M)} € Z7(X), the element
@b (21(M)) € ZY(IM), where N = *IM. Denote the relation by ¢?, : Z&(X) 3 29 — {h,, (z7(*M))|M €
Cover(X)} € HEmECaﬂ(X) Zj(Mt). We see that for each Mty <My with My = *MW; and Ny = *My,
@b g (Z1(M)) ~ W2l (29(My)), so that the sequence {@h,,(29(*9N))|M € Cover(X)} is a Vietoris
cycle. We may assume Mo <* Dy <™ My without loss of generality since the existence of a common star
refinement M3 of Dy and Dy combined with assertions for M3 <* Dy < WY and Mz <* Ny <* My, assures
the results for My < MYy through AT @2,13(1(2‘1(*93?3)). Take a common star refinement 8 of 9%; and Ds.
Since 29 = {24(M)} is a Cech cycle, all we have to show is gol;mq(pg‘l”zq(m)) ~ h;“lf’“?cpgmq(pg‘wzq(m)).
Let K = K(29(F)) be the complex formed by all simplexes in cycle 27(F) € X () together with their faces.
By Lemma 0.2.2, it is sufficient for our purpose to show the existence of simplicial map ¢ on K x {0,1}
to L = XV(My) such that ¢f,  (p3*29(P)) and h21 220 (pF2¥29(P)) are images through the in-
duced map g1 @ Cyp1(K x {0,1}) — XV(M1) of 27(P) x 0 and 22(P) x 1, respectively. For each
a € Vet(K) C B, define ¢ as ¢((a,0)) = ¢, (p™%(a)) and ¥((a,1)) = b, (p™2%(a)). For any sim-
plex ((ag,0),...,(a;,0), (as,1),...,(ag, 1)) in K x {0,1}, we have a simplex ag---a, of K = K(z1(B)), so
that ag N --- Nag # 0. We have to show that (5, (p™¥(a0)),..., ¢, (™% (a;)), 5, P™2%(a;)), ...,
©b., (p™2% (ag))) forms a simplex in X?(9Mt;). Note that for each j, 0 < j < i, P<* 9y <* My, and for
each 7,1 < j <k, P <" MV <D <M. Since ag N -+ - Nay # (O, there are N1 € Dy and Ny € Ny
such that agU---Uag C Ny and agU - --Uay, C Ny. By definitions of ¢ and p, St(Ny; ;) and St(Na;Dy)
contain all points of the form ¢4 (p™%(a;)), (0 < j < i) and Y, (p™2¥(a;)), (i < j < k). There are
M; € 99t and Mo, such that St(N1;911) € My and St(N2;92) C M. The fact My <* DTy means,
however, that My C Nj for some N in 9t;. Since N{ NNy D ag U ---Uag, Ni C St(N1;91), so that M’
includes both St(N1;9;) and St(N2; 912). Hence, (5, (p™¥ (a0)), . . ., ©hy, (™% (1)), 5, (P™2% (a3)), .- -,
©b, (p™2% (ag))) forms a simplex in X? (M) is a simplex in X (My).

(2-2) We see for each 9, DN = "M, P = *N, and 1? € C"(X), b, © &, (YU(P)) ~ 74(PB), which is
sufficient for the assertion ¢¥, 0 ¢? (79) = 7% Let K = K(v%(3)) be the subcomplex of X" () formed by
simplexes of v7(P) and their faces. By Lemma 0.2.2, we may reduce the problem to show the existence of
simplicial map 9 on K x {0,1} to L = X" (91) such that @an ° (f;lq (v7(P)) and v?(P) are images under
the induced map ¥g41 @ Cyy1(K x {0,1}) — XV(M) of y2(P) x 0 and v4(P) x 1, respectively. For each
a € Vert(K) C X, define ¢ as ¥((a,0)) = ¢4, 0 ¢%(a) and ¥((a, 1)) = a. For any simplex ((ag, 0), ..., (a;,0),
(ai,1), ..., (ag, 1)) in K x{0,1}, we have a simplex ag - - - a, of K = K(y4()), so that there is a member P of
P such that ag, . ..,ar € P. We have to show that (¢%, 0¢b (ag), - - ., ¢5 0C4(ai), ai, . .., ax) forms a simplex
in XV (9). Since P " N "ML, there are N € Dt and M € M such that St(P,P) C N and St(N, D) C M.
Hence, by definitions of ¢%, and ¢4, M includes all vertices of (¢% o (% (ao),- .., 5% o Ch(a), ai,. .., ax).

(2-3) For each M, DN = *M, P = "N, and 27 € C°(X), we see (5,005, (27(P)) ~ 29(P). This is exactly
shows (2, 00l (27) = 2%. Let K = K(29(9)) be the subcomplex of X¢(9) formed by simplexes of z¢() and

*
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their faces. By Lemma 0.2.2, to show the existence of simplicial map ¢ on K x {0,1} to L = X¢(9) such
that (5, © 5, (27(P)) and 29(PB) are images under the induced map 1hg11 : Cor1 (K x {0,1}) — X°(IM)
of 24(P) x 0 and 29(P) x 1, respectively. For each a € Vert(K) C B, define ¥ as 1((a,0)) = (&, o ¥4 (a)
and 9((a,1)) = a. For any simplex ((ao,0),...,(a;,0),(a;,1),...,(ax, 1)) in K x {0,1}, we have a simplex
ag---ax of K = K(2¢(*B)), so that sets ag,...,ar € P satisfy ag N --- Nax # 0. We have to show that
(b, o ¢b(ag),. .., ol (ai),ai,. .., a;) forms a simplex in X¢(9). By definition of ¢% and (¥, vertex
¢b o h(a;) (0 < j < i)isasetin M; € 9t such that for a certain z; € a; and its neighbourhood
N; € 91, M; D St(N;;91) holds. Since ag N -+ Nay # 0, there is a set N € D such that ap U---Ua, C
St(ap;P) C N. Since (N;; D) includes N for each j = 0,...,4, M; includes N for each j =0,...,7. Hence
Myn---NM;Na;N-ag DagN---Nag # B, so that (&, o p%(ag), ..., 8 05 (a:), ai,...,ax) is a simplex
in X¢(O). ]

0.3 Vietoris-Begle’s Theorem and Local Connectedness
Vietoris-Begle Mapping

It is sometimes convenient to use the notion of reduced set of 0-cycles and reduced 0-th homology groups.
Reduced 0-th homology group is obtained by considering only cycles in which the sum of coefficients is
0. For 0-th homology group Ho(X) = Zy(X)/Bo(X), the reduced homology group will be denoted by
Ho(X) = Zo(X)/Bo(X), where Zo(X) = {z € Zo(X)|(z = 3. a;0:) = (3 o' = 0)}. Topological space X
is called acyclic under a certain homology theory, if (1) X is non-empty, (2) the homology groups Hy(X)
are 0 for all ¢ > 0, and (3) the 0-th homology group Hy(X) equals to the coefficient group F' (or the 0-th
reduced homology group Hy(X) equals to 0).

Let X and Y be compact Hausdorff spaces. For Vietoris 9t-complex X? (1) and subset W of X, the set
of all Vietoris 9t-simplexes whose vertices are points in W forms a subcomplex of X (1) and is denoted
by XV(9t) N W. Then continuous function f of X onto Y is called a Vietoris-Begle mapping of order n if
for each covering Mt of X and for each y € Y, there is a covering P = P (M, y) of X with P < M such
that each g-dimensional (0 < ¢ < n) Vietoris PB-cycle z4(P) € X?(P) N f~(y) bounds a ¢ + 1-dimensional
Vietoris M-chain c4TH(M) € XU(MW) N f~1(y), where all 0-dimensional cycles are chosen in the reduced
sense (Figure 4). Continuous function f : X — Y is said to be a Vietoris mapping if the compact set f~1(y)

N I

.-

iy

Figure 4: Vietoris-Begle Mapping of order n
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is acyclic for all y € Y, i.e., H'(f~'(y)) = 0 for all n > 0 and HY(f *(y)) = 0. If f is a Vietoris-Begle
mapping of order n for all n, by definition of the inverse limit, f is clearly a Vietoris mapping. Converse
is also true in our special settings. In this subsection, we see the following two important theorems: (1) if
the coefficient group F is a field, Vietoris mapping is a Vietoris-Begle mapping of order n for all n, and (2)
if f: X — Y is a Vietoris-Begle mapping of order n, there are isomorphisms between H;(X) and HJ(Y")
(0 < ¢ < n). In this section, we see (1). Assertion (2) is treated in the next section after the concept of
Vietoris-Begle barycentric subdivision is defined.

Since coefficient group F' is supposed to be a field, inverse systems of Vietoris and Cech type chains,
cycles, boundaries, and homology groups are systems of vector spaces. Especially, all n-dimensional chain,
cycle, and boundary groups of nerves (defining Cech homology groups) are finite dimensional. For an inverse

system of finite dimensional vector spaces, we know the following result on essential elements.®

Lemma 0.3.1: (Essential Elements for Inverse System of Finite Dimensional Vector Spaces) Let
(Ei,mij)ijer,j>i over directed set (I,>) be an inverse system of finite dimensional vector spaces. Then
for every ¢ there is an element jo > ¢ such that for all j > jo, every element z; of m;;(E;) C E; is an essential

element of E;, i.e., x; € myx(Ey) for all k > i.

ProOF : The set of essential elements of Ej is the subspace H; = (1,5, m;(E;). Since E; is finite
dimensional, the dimension of H; is also finite, say n. Then there are finite elements k1, ..., k, of I such
that H; = ﬂ?zl Tik; (Ex;). Let jo be an element of I such that jo > jp for each k = 1,...,n. Then for all
J > jo, we have m;;(E;) = mij, (7505 (E;)) C mijo (Ejy) = majp (M50 (Ejy)) C miji (e5,,) for each k =1,... n.
Hence, for each j > jo, m;;(E;) C H; = ﬂ?zl ik, (B, ). [ |

Since the inverse system for Cech homology group (for compact Hausdorff space X) is a system of finite
dimensional vector spaces, it follows from Lemma 0.3.1 that for each covering 9% of X, there is a refinement
MMy = "M such that if 29(M) € Z{(N) is a g-dimensional N-cycle of X, then p*o™(29(M)) is the
Mio-coordinate of a Cech cycle. By taking the finest 91 for ¢ = 0,1, ...,k and taking P = *I, we have the

following theorem.”

Theorem 0.3.2: (Vietoris-Begle Mapping Theorem I) Let 9t be a covering of compact Hausdorff space
X and W be a compact subset of X such that every g-dimensional Cech reduced cycle in W (0<q<k)
bounds a ¢ + 1-dimensional Cech chain in W (H, ¢(W) = 0).1 Then there is a refinement 3 of 9t such
that every g-dimensional Vietoris P-cycle on W (0 < ¢ < k) bounds a ¢ + 1-dimensional Vietoris 9%-chain

on W. Hence, Vietoris mapping is a Vietoris-Begle mapping of order n for all n.

PROOF : Take refinements P = *I and DM of My = *M as stated in the previous paragraph. Let v
be a g-dimensional Vietoris §-cycle on W (0 < ¢ < k). Denote by ¢4 : XV(P) — X°(DM) the simplicial
mapping defined in the proof of Theorem 0.2.3. Then (5, 4(7%) is a g-dimensional Cech M-cycle (0 < q < k).
By definition of 2N, pé”‘““’(&(’y%) is the 9y-coordinate of a Cech cycle, 27, on W. Since flg(W) =0,
this Cech cycle bounds so that pg’*o‘“gg (73) ~ 0 on C5(My). Tt follows that (pgﬁp;"o‘”gg (74) ~ 0 on
WY () = X?(M) N W, where 8, is the simplicial mapping defined in the proof of Theorem 0.2.3 and

8This concept of importance in the homology theory of system of groups is due to ?). See also ?, p.79) and ?) for elementary
compact coefficient groups.

9The assertion may be considered as a part of Vietoris-Begle’s Theorem. We can see the same (though more abbreviated)
argument in the proof of Theorem 2 in Begle (1950a).

10For notational convenience, let us define here I:I(‘;(W) as I:Ig(W) = Hg(W) for all ¢ > 0.
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Figure 5: Cycles on Acyclic Set W

XY (OM)NW denotes the subcomplex of Vietoris 9t-simplexes on W. Hence, the first assertion of this theorem
follows if we see b, p2 0™ (Y (v4) ~ v on XV (M) NW. We can see it, however, by repeating completely the
same argument with (2-2) in the proof of Theorem 0.2.3. The second assertion follows immediately from the
first if we set W = f~1(y) for Vietoris mapping f : X — Y and point y € Y. ]

Locally Connected Spaces

Besides the Vietoris-Begle mapping, there is another important concept for fixed point arguments under
the Cech type homology, the local connectedness. In the Cech type homology theory, the family of open
coverings, Cover(X ), on space X is used in describing two fundamental features of topological arguments: (i)
the measure of connectivity (represented by the intersection property among open sets), and (ii) the measure
of convergence or approximation (as a net of refinements of coverings). All analytic concepts are changed
into algabraic ones through above two channels. In the following, it is especially important to notice about
the second feature, so that each covering Dt € Cover(X) is used as a sort of metric or a norm, and Cover(X)
is used as if it were the uniformity in describing the total convergence properties for space X . To emphasize
that we are choosing a covering or a refinement for the second purpose, we call it norm covering or norm
refinement instead of saying a covering or refinement.

The local connectedness is defined as a purely homological notion to generalize the concept of absolute
neighborhood retracts frequently used under the framework of metrizable spaces. Let us consider a compact
Hausdorff space Y and 9t € Cover(Y'). A realization of simplicial complex K in YV (1) is a chain map 7.
Partial realization 7’ of K is a chain map defined on a subcomplex L of K such that Vert(L) = Vert(K).
For a norm covering 9t € Cover(X) and realization 7 of K, write norm(7) < 91 if for each simplex o of K,

there is a set N € 91 which contains the underlying space |ro| of the chain 70.!!

DEFINITION 0.3.3: (Locally Connected Space) Topological space X is said to be locally connected
(abbreviated by lc) if for each norm covering € € Cover(X) there is a norm refinement J < & satisfying

the following condition: for each covering 9%, there is a refinement Dt such that every partial realization 7/

HFor a value under a homomorphism, parenthesis are abbreviated as 7o = (o). Note also that the underlying space of chain
7o is the underlying space of the corresponding complex defined by all simplexes of 7o (appeared with non-zero coordinates in
the formal summation).
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of finite complex K into XV (D) with norm(7') < J may be extended to a realization 7 into X(901) with
norm(7) < &.

It is clear from the definition that if X is lc, then X x X is also le. If X is a compact Hausdorff and Ic,
then every closed subset of X is also lc. Moreover, compact Hausdorff lc spaces has the following strong

properties.

Theorem 0.3.4: (Begle 1950b) If X is compact Hausdorff lc space, following (a) (b) (c) hold.

(a) There is a covering Dy of X such that if z is a Vietoris cycle such that z(DT) ~ 0 on XV (D) for some
I <My, then z ~ 0.

(b) The homology groups of X are isomorphic to the corresponding groups of a finite complex.

(c) Each covering 9 of X has a normal refinement DU, i.e., a refinement such that for each cycle zy, on
XU(M') C XV(IM), there is a Vietoris cycle z such that 2(9) = 2oy

Proofs are not so difficult. See Begle (1950b).

0.4 Nikaido’s Analogue of Sperner’s Lemma

In this section we see the important second half of the Vietoris-Begle mapping theorem, (2) if f: X - Y
is a Vietoris-Begle mapping of order n, there are isomorphisms between H(X) and H;(Y) (0 < g < n).
For this proof, we need the concept of barycentric subdivision under the framework of Vietoris complexes.
After the proof of Vietoris-Begle mapping theorem, we also see an extension of Sperner’s lemma which was

originally given by Nikaido (1959) as the first application.

Vietoris-Begle Barycentric Subdivision

Let Y be a compact Hausdorff topological space. Consider coverings 9t € Cover(Y') and R € Cover(Y)
of Y. In the following, for Vietoris 9t-chain ¢(Mt) € C7 (M), let us denote by K(c(M)) the complex
of all simplexes appeared with positive coefficients in ¢(9t) and by diam |c¢(9)] < DN the fact that there
is an element N € D1 in which all vertices of K (c(9%)) belong. Moreover, for each g-dimensional chain
c? € CJ(M) and y € Y, we denote by y* c the (¢ + 1)-dimensional {Y }-chain defined as the extension of the
operation y* (ag - - - ax) = (yag - - - ai) for each oriented k-dimensional simplex (ag - - - ax).'2 RN-barycentric
subdivision of k-dimensional Vietoris R-simplex o* € X" (R) is chain map Sd, : CZ(R) — C¥(M), satisfying
the following conditions.

(SD1) For each 0-dimensional simplex yo of K (o*), Sdo(yo) = yo.

(SD2) For each g-dimensional simplex (yo - - - y4) (0 < ¢ < k) in K(o%), there exists y € Y such that y*
Sdg—1({yo -~ 9+ yq)) € CF(M) for each i and Sdy((yo -+~ yq)) = X7 (—1)'yxSdg—1({Yo - i -+ yq))-

(SD3) diam |Sdyo*| <M.

Note that as long as the existence of y for each g-dimensional JR-simplex (yo - - - y4) stated in (SD2) is assured,
condition (SD1) and (SD2) may be considered as a process to construct Sd,, ¢ = 0,1, --. By mathematical
induction, we can verify for each ¢ > 0 that 9,5d,((yo - - - yq)) = Sdg—104({Yo - - - Yq)), so that Sd, constructed

is indeed a chain map.

12Note that in the above {Y'} € Caver(Y)) is taken as a covering of Y.
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Let us consider n-skeleton Y’ () C YV(MR) of YV(M), the subcomplex of all k-dimensional (0 < k < n)
Vietoris JR-simplexes on Y. An n-dimensional SRI-barycentric subdivision of Y is a chain map {S’dg“” :
CH(Y,P(R)) = CY(M)} such that for each k-dimensional simplex o* (0 < k < n), the restriction of {Sd2*™}
on the chain of subcomplex of Y,V (2R) defined by o* is an SRD-barycentric subdivision of o*.

Next, assume that there is a continuous onto map f on compact Hausdorff space X to Y. For each pair
of coverings M € Cover(X) and M € Cover(Y) such that M <{f1(N)|N € DN}, f induces simplicial map
XU(M) > ap---ax = flag) - flar) € Y?(M) so that chain map {f, : CJ (M) — CJ(M)}. Then as we
can see in the next theorem, if f is Vietoris-Begle mapping of order n, there is a chain map 7 = {7;} on
(n—+1)-skeleton of YV (M) to X (M) such that {f,07,} is an n+ 1-dimensional (PRDT)-barycentric subdivision
of Y. Moreover, given 91, such refinement YR may be taken arbitrarily small and corresponding 7’s may be

defined as (Vietoris homologically) unique.

Theorem 0.4.1: Let X and Y be compact Hausdorff spaces and let f : X — Y be a Vietoris-Begle
mapping of order n. For each M € Cover(X) and M € Cover(Y) such that M <{f~1(N)|N € 1}, there
exist a cover M = R(M,MN) € Cover(Y') and a chain map 7 = {7,} on (n+ 1)-skeleton of YV(R) to X (M)
such that chain map {f, o 74} is an n-dimensional (9RDT)-barycentric subdivision of Y. Moreover, for any
S € Coer(Y), there are R" and 7' satisfying the same condition with 98 and 7 such that SR’ < & and
7/ (27) ~ 7g(27) in CY(MM) for all 29 € Z7(R).

Above theorem shows an essential feature of the Vietoris-Begle mapping and plays crucial roles in the proof
of the Vietoris-Begle mapping theorem. Before proving it, I introduce one technical lemma. In Lemma 0.2.2,
we have seen one of the simplest kind of prismatical relation that may be utilized to show the equivalence
between two cycles. There exists another convenient (though a little bit more complicated) method in forming
prisms. Denote by {0,1, I} the one dimensional abstract complex formed by two 0-dimensional simplices 0
and 1 together with 1-dimensional simplex I whose boundaries are 0 and 1 under relation 9;(I) = 1 — 0.
For simplicial complex K, the product complez of K and {0,1,I} denoted by K x {0,1,1} is the family of
simplexes of the form o x 0, 0 x 1, and ¢ x I, where ¢ runs through all simplexes in K. Boundary relations on
K x{0,1,I} are defined as 9(o x0) = (00) x0, d(c x1) = (0c) x 1, and (o xI) = (0o) x I+ (0 x1)— (0 x0).
(See Figure 6.) It should be noted that K x {0,1,I} is no longer a simplicial complex. The subcomplex

f"i”'v'—-v--’v=
BV W e T C IVt ot

i

® =

Figure 6: Prism K x {0,1,1}

of K x {0,1,I} constructed by all simplexes of the form o x 0 may clearly be identified with K and is
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called the base of K x {0,1,I}. There also exists an isomorphism between K and the subcomplex of all
simplexes of the form o x 1, which is called the top of K x {0,1,I}. Then for each cycle z on K, we have
d(zxI) = (zx1)— (2 x0), immediately, so that 2z x 1 ~ 2z x 0 in K x {0,1,I}. Therefore, as before
(Lemma 0.2.2) if there exists a chain mapping 6 on K x {0,1, I} to a certain simplicial complex L, we have

the following.

Lemma 0.4.2: Assume that there is a chain mapping 6 on K x {0,1, I} to simplicial complex L. For
two images 0,41(27 x 0) and 0,41(27 x 1) in the ¢g-th chain group C,(L) of ¢g-cycle 27 € Cy(K) (through the
induced homomorphism 6,11 : Cyr1(K % {0,1,I}) — C4(L)), we have 0441(2% X 0) ~ 0441(27 x 1) on L.

PrROOF OF THEOREM 0.4.1 : We shall use four steps. Step 1 is devoted to prepare for basic tools. In
Step 2, we construct Y8. Step 3 is used to define 7. Step 4 is assigned for constructions of SR’ and 7’.

(Stepl) By the definition of Vietoris-Begle mapping, there is a covering (9, y) for each y € Y
and 2T. Consider closed (compact) subset X \ St(f~*(y); *PB(9M,y)). Then the image under f of X \
St(f~(y); P (M, y)) is also closed (compact) subset of the normal space Y disjointed from {y}. Given
M € Cover(Y), chose Q(M,NN, y) > y as an element of *IT and Q(M,D) as a finite subcovering of the cov-
ering {Q(M,DN, y)|y € Y}. Then covering £ (MT,D) satisfies that if B is a subset of Y such that B C @ for
some @ € Q(M,M), there is a point y € Y such that St(y;*N) D B and St(f~1(y); *P(M,y)) D f~1(B).
In this proof we call this y the corresponding point of Y to B and use it as if it were the barycenter of points
in B.

(Step 2) Hence, for each 9t € Cover(X) and Dt € Cover(Y), Q(M,DN) € Cover(Y) satisfies that for every
g-dimensional Q (MT,DN)-simplex (yo - yq), (0 < ¢ < n), there is a point y € Y such that y * (yo---yq)
is a *M-simplex and St(f~1(y); "B, y)) D f'({vo,...,yq}). This suggests the possibility to obtain a
sequence of refinements Mty < - - - K MW, 11 = M together with refinements Ny < -+ - <My 11 = N such that
My <{fH(N)|N € DNy} for each k = 1,...,n + 1, and for each g-dimensional D -simplex (¢ = 0,...,n)
(Yo - yq), there exists y € Y such that y = (yo - - - y,) is a *M,q1-simplex and St(f~(y); *P(My41,y)) D
I *({yo,---,y4})- (As we see in the next step, under the definition of barycentric subdivision (SD1)—(SD3),
this property shows that for each n 4+ 1-dimensional 9%p-simplex we are possible to define an 9D, 41-
barycentric subdivision.) Indeed, given 9,41 = D and ML, 1 = M, set N, = QM |, My1) < My
Note that with Q (M, ,, M, 1) associates finite y,, 11,;’s such that Q(MX, |, M,,11) consists of QM 1, "My 1, Ynt1,i
Let M, be a common refinement of coverings P (M, 11, Yn+1.4)’s and {f~H(N)|N € M, }. Set N,,_1 =
(ML, *N,,). Repeat the process until we obtain DNy. Define R as M\ = NR(MW,N) = No.

(Step 3) Let us define 7, (0 < g < n) on chains of Y?(R) = YV (M) to X(M). Consider a 0-
dimensional Vietoris PR-simplex, %, of Y?(MR). ¢° may be identified with a point yo in Y. Define 7(c°)
as 0O-dimensional Vietoris 9%g-simplex £° of XV(PMy) which may be identified with an arbitrary point
29 € f~ (yo) € X. Then we have fy o 7(0?) = 0% = Sdy(c?), so that we obtain 7y by linearly extending
it. Next, consider k-dimensional Vietoris R-simplex, o, of YY(9R) (0 < k < n + 1). Suppose that for each
(k — 1)-dimensional R-simplex %=1, 7,1 (0*~1) is already defined and satisfies that fi_1 o 7,_1(cF71) is a
R "Dy, -barycentric subdivision of 0%~ together with the relation of chain map, Op_20Th—1 = Th—200p_1,
where 7,_5 for k = 1 is defined to be 0-map. In the following, we see that we may define 74(c*) so
as to satisfy that Op_; o 7, = Th_1 0 Ok and fr7ro® is a D *Ny-barycentric subdivision of o for each
k-dimensional Vietoris 9R-simplex ¢¥. Then by the mathematical induction, we may extend the defini-
tion of 75, until it is finally defined on all of the (n + 1)-skeleton of Y (9R). Since dyo* is an fR-chain,

Tr—10k0" is already defined and is a 9-cycle since Op_17,—10k0" = Th_20k_10,0" = 0. By assump-
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tion fr_17k—10k0" = fr_1TK_1 Zf:o(—l)i‘f’-c?1 = Ef:o( 1) fr_17k—107 " belongs to C}_, (*M;_1), where

K3
affl’s are k + 1 (k — 1)-dimensional face of o*, and fk,lTk,lof Lis a QR "D, _1-barycentric subdivision of

of_l for each i. It follows that all vertices of the **t,_1-chain, fr_17k—10k0"F = fr_1Tk_1 Zfzo(fl)iof =
Zfzo(—l)kfk._lrk_laf, belongs to St(Rg; *Mg_1) C St(™Nik_1;**MNr_1) for an Ry € M having all vertices
of % as its elements and **Nj,_; € *N,_1 such that Ry C *Ny_1. Since there exists *N,_1 € *),_1 such
that St(**Nj_1;*Mx_1) C *Ni_1, we have diam |fp_17x_10k0%| < *Mip_1. Then DNp_1 = (M, *Ny)

implies that there is corresponding point y = yi.; € Y, Q(M, N, yr.i) € (M, *Ny), to | fr_17r_10k0"|

satisfying the following two relations.!?
(0.6) St(y; M) O | fre1Th—10k0"]
(0.7) St(f ) "Bk, ) D (| fa1mh10k0"]) D | i1 00|

Denote by z*~1 the cycle 7,_10,0* € ZP_,(My_1) and let a1, ...,z be vertices of K(z*~1). Note that by
(0.7), there are finite z},...,2} € f~!(y) and *Pi,...,*P; € *P (M, y) such that | € *Py,...,z, € *P, and
x1 € *Py, ...,z € *P;. By defining mapping p on Vert(K (2571)x {0,1}) to X as u(z;,0) = x; for each vertex
(z4,0) in the base of K (2*~1) x {0,1} and u(z;, 1) = 2/ for each vertex (z;,1) in the top of K(z*~1) x {0, 1}.
It is easy to check that p is a simplicial map. Indeed, if ((ag,0),..., (a;,0),(a;, 1), ..., (am, 1)) is a simplex
in K(2%71) x {0,1}, then ((ap,0),...,(amn,1)) is a simplex in K (z¥71), so that there exists element M;_; €
M1 such that ag,...,a, € M,_;. Since g; is equal to some z;, and both (x;,0) and (z;,1) are in *P},
all vertices in (ao, ..., a;, p(a;, 1), ..., p(am, 1)) belong to St(My_1, P (M, y)). By considering the fact
that 9,1 < P (Mg, y), they belong to an element of (M, y), so that p maps K(zF~1) simplicially
to XU(P(Mx,y)). Let us use p to define 74(c*) as follows: Set &¥ = p(®y(2571)), where ®; is the
prismatic chain homotopy defined in equations (0.1)-(0.3). By (0.3), we have Oy (u®s2""1) = p(zF~1 x
1) — ("1 x 0) = p(2F=1 x 1) — 2k~ Since u(z*~! x 1) is a cycle on XU(P(Mx,y)) N f~1(y), there is
a chain & on XV(P(M,y)) N f~1(y) such that &l = u(2*~! x 1). Then if we set (%) = &5 — &F,

we have Opm0* = 271 = 7,_10,_10", so that 7 satisfies the condition for chain map. Moreover, since

Fe(mio®) = fr(€h — €b) = fi(€8) — fi(u(Pk(2571))), we may also rewrite it as fi(€5) — Pk (fr—1271)) =
Tr(€5) — (@ (fr17k-10k0%)) = fr(€h) — (D1 (Sdy_10x0")), where ® is the prismatic chain homotopy on
complex K (fr_1(2F71)) to K(fr_1(z%71)) x {O 1} and /1 is defined on K (f,_1(2*1)) in exactly the same
way as u, i.e., 0(f(z:),0) = f(x;) and a(f(x;),1) = f(zf) = y. Since St(y; M) D |feo1Tk_10k0"%|, 1 is
a simplicial map on K (fx_1(2*71)) x {0,1} to Y”(*‘ﬁk). Moreover, fi(7r0%) is clearly the join of y with
Sdy_1 Opo® with diam | Sdg o*| < *N;..

(Step 4) Take M <+ <M, and D <--- <M, in the same way as My < -+ < M4 and
Mo <+ < MNy41 except for the process to define My, (k < n). Let us define D), as a common refinement
of QM 1, MM11), M, and & for each k < n. Define R’ as M, and 77, (0 < k < n+ 1) in exactly the
same way as 7. We now check for each ?R'-cycle 2", 7,(2") = 7/,(2"). For this purpose, it is sufficient by
Lemma 0.4.2 to show mapping 6 to X*(9) such that for each o* x 0, §(c* x 0) = 7(c*), and for each
of x 1, 0(c* x 1) = 7/(c%), (0 < k < n), may be extended as a chain mapping on K(z") x {0,1,1}. On the
base and top of K(2") x {0,1,1},  clearly defines chain maps since we have g (0x0* x 0) = O (7(c%)) =
Th—1(0k0*) = 01 (90" x 0) and 9y (Oro" x 1) = Ok (/. (%)) = 7 _,(Ok*) = O_1(Iko™ x 1).

Let us consider a 0-dimensional simplex ¢? in K(2") and 0® x I € K(z") x {0,1,1}. By definition
(in Step 3) foro0” = fori0® = ¢° and both 79(c°) and 74(c) are points in f=(c) = f71(|for00?]) =

13For Vietoris PB-chain c, |c| denotes the set of all vertices of simplexes appeared in ¢ with positive coefficients.
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I foréo®]) D |700°| U |750°|. Then it is automatically satisfied that there exists y (y = %) such that
St(y; M) O |0°| and
St(f~H(y); P (M, y)) D fH(a”).

Note that 0(c® x I) = 7(c°) — 7/(¢¥). Hence, we have St(f~1(y); ") D [09(c® x I)| (Figure 7). Let

Figure 7: y and 09(c* x I)

us consider simplicial complex K = K(7(0°) — 7/(¢°)) and mapping w : Vert(K x {0,1}) to X such that
w(a,0) = a and w(a,1) = y*, where y* is an element of f~!(y) satisfying {a,y*} C *P for some *P € *R.
Such y? exists since St(f~1(y); *P) D [#9(c° x I)|. Then w is a simplicial map on K x {0,1} to X?(P). As
before, let us define 1 as &1 = w(®(190° — 150°)), where ® denotes the prismatic chain homotopy. Note that
06} = w((190° — 750%) x 1) — (100° — 750?). Now w((190° — 70%) x 1) is a 0-cycle (by the previous equation)
on XU(P)N f~1(y), there is a 1-chain £} on XV (M1) N f~1(y) such that I3 = w((r90” — 7o) x 1). Define
0(c® x I) to be &3 —£1. Then 6 satisfies the condition of chain map 90 = 00 for o¥ x I for each 0-dimensional
00, Clearly, f|£3 — &} is the join of y and 0¥ = y, so that diam f|&] — &1 <

Next assume that 6(c™ x I) is defined for each m < k in such a way that 90 = 96, 0(c™ x I) € M, 41,
and diam f|0(c™ x I)| < "M,,41. Let o* be a k-dimensional simplex of K(z"). Then 6(9(c* x I)) is
already defined. Since 0(9(c* x I)) = 0((0c*) x I) + 0(c* x 1) — 8(c* x 0), we have f|0(0(c* x I))| C
f10(8c®)| U flme(o®)| U f|7i.0*|. By considering facts, diam f|ry(c*)| < ), and diam f|7/ ()| < D, <™,
we have St(R';Dy) contains f|7(c%)| and f|r](c")|, where R’ denotes an element of SR’ to which all

k=1 of ok,

vertices of 0% belong. It is also true by assumption that for each (k — 1)-dimensional face o
diam f|0(c*~1 x I)| < "y, so that we have diam f|00(c* x I)| < Dy, = (M1, *Mpr1). Hence, we have

a point y such that Q(Myi1,  Mit1,y) € Q(Mhs1, Mpt1),
St(y; Mi41) D fl00(c* x I)| and
St (W) " B(Mey1,y)) D FfI09(" x T)].

Hence, we have St(f~1(y); B (Mi11,y)) D |09(c* x I)|. (See Figure 7.) Consider again simplicial complex
K = K(00(c* x I)) and mapping w : Vert(K x I) to X, we may define 8(c* x I) in exactly the same way as
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before until k£ = n in such a way that 90(c* x I) = 00(c* x I), 6(c* x I) € M1, and diam f|0(c® x I)| <
M1 |

Vietoris-Begle Mapping Theorem

Let X and Y be two compact Hausdorff spaces and f : X — Y a continuous mapping. For each covering
N € Cover(Y), (M) = {f~1(N)|N € M} is a covering of X. It is clear that f maps each DT(N)-simplex to
D-simplex so that induces a simplicial mapping on X*(M(N)) to V(M) and chain mapping {f;"}. Given
g-dimensional Vietoris cycle v7 = {~v7(IM)|M € Cover(X)} of X, define f,(7?) as the g-dimensional Vietoris
cycle of Y, { £ (v4(M(MN)))[D € Cover(Y')}. The mapping of v? to f,(7?) clearly induces a homomorphism.

The next theorem shows that f, indeed induces an isomorphism (Figure 8).

X Y

@)

Figure 8: Isomorphism under Vietoris Begle Mapping of order n

Theorem 0.4.3: (Vietoris Begle Mapping Theorem II: Begle 1950a) Let X and Y be compact Hausdorff
spaces. If f: X — Y is a Vietoris-Begle mapping of order n, there is an isomorphisms between H (X) and
HJ(Y) for each ¢ = 0,1,...,n.

PROOF : We shall use three steps to prove the assertion. In Step 1, we construct n-dimensional Vietoris
cycle {7 (M)} of X from {z" (M)} of Y. By using it, we see in Step 2, the homomorphism induced by f
between H/(X) and H;(Y') for each ¢ = 0,1,...,n is onto. The homomorphism is seen to be one to one in
Step 3.

(Step 1) With each 9t € Caver(X) associate covering (M) € Cover(Y) such that M <{f~1(N)|N €
N} UM = {f1(N)|N € D1} for some M, it is always assumed that DT(MT) is equal to one of such .
Let 2™ = {2"(M)|D € Cover(X)} (or simply {z™(D)}) be an n-dimensional Vietoris cycle of Y. For each
covering M € Cover(X ), define 4" (M) as ¥ (M) = 7, (2" (R (M, D(MN)))), where 7 = {7, } and DR(MT,DT)
are the chain mapping and the covering defined in Theorem 0.4.1.

We see that v = {y™(901)} is an n-dimensional Vietoris cycle. Since every "(91) that is an image of
the cycle, 7, (2" (DR(DT,DT(MT)))), is obviously an n-dimensional Vietoris Mi-cycle, all we have to show is

A(DT) ~ RV (4™ (OIT)) for each pair M K M. That is, 7, (2" (MR (MT,I(MN)))) ~ A7 () (2™ (DR(DT",D(M")))))

for each M" XM, where 7" is the chain mapping associated with DR(DT",DT(MV")). For a while, de-
note SR(MT,DT(MT"')) by M" and R(MLIN(M)) by QM. If we omit inclusion map h,,, we have to show
Tn(2"(M)) ~ 7/ (2" (R")).
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In Step 4 of the proof of second assertion in Theorem 0.4.1, we may chose D) < -+ <9, and NG < -+ <N, 4
as common refinements not only of serieses {9y} and {D} constructing 7 (in Step 3) for Mt and N but
also of another streams {91",} and {M"} combined with chain map 7" for M and MN"' satisfying the same
condition with 9t and . Since the construction of 7’ is independent of 7 and 7", by repeating the same
argument (to construct ¢’ instead of ), we can see 7/, (2") ~ 7,(2") and 7,,(2") ~ 7,/(2") in CH (D) for all
2" e ZP(R).

That is, there exists common refinement R' of | = R(MWL,DT(MT)) and R = R(M", (M) ) together
with chain map 7’ such that 7/(z"(R')) ~ 7(z"(M')) and 7/(z"(R")) ~ 77(z"(NR'")), where 7 and 7" are
the chain map associated respectively with 9 and 9R". Hence we have 7(2"(R')) ~ 7”7 (z"(MR")). Since
2" is a Vietoris cycle, we know A2™ (z"(R')) ~ z"(M) and AY ' (z"(NR')) ~ z"(M"), so that we have
P(7(R)) ~ 7 (7 (R)).

(Step 2) We see that f induces an onto mapping. Let z™ be an n-dimensional Vietoris cycle of X and
A" = {7 (2" (R(M,DT(M)))) } the n-dimensional Vietoris cycle of Y corresponding to z™. Let us verify that
fo(7"™) ~ z™. Given DM € Cover(Y), let T be the covering {f~1(N)|N € Dt}. Then v (M) = 7(2"(M)),
where R = R(DLO(MY)). It follows that the D-th coordinate of fr (™), f(y™(M)), is equal to
fRrr 2" (R(,OT(MT))). Note that D(MT) may not equal to M. Since f27,z"(M(M,I(MT))) is an
(MO(M) )-barycentric subdivision of 2" (DR(ML,DT(M))), 2™ (M) ~ Sd,, 2" (R) = £ (72" (R(ML,DN(MN)))) =
2 (y™(9r)) on YU(D) (as well as on YU (D(M))). Moreover, since 2" is a Vietoris cycle, we have
2" (M) ~ 2"(M). It follows that 2" (D) ~ £ (v (DY) on YV (N).

(Step 3) Let us confirm the mapping induced by f is one to one. Since f clearly induces a homomorphism,
it is sufficient to show that f,,(7™) ~ 0 means 4" ~ 0 for each n-dimensional Vietoris cycle 4™ of X. Given
M € Cover(X), chose DT = DNN(MT) and R = N(M,IN(MT)) as before. Let 84 = {f~1(R)|R € M}. Moreover
let us recall sequence {My;} of refinements of M defined in the proof of Theorem 0.4.1 and U a common
refinement of 31 and all I’s.

Since 4™ is an n-dimensional Vietoris cycle, y"(0) ~ 4™(4) on X?(). Then we have f2~"(W) ~
fRam(U) on YV(M). But if f,(7™) ~ 0, R-th coordinate of f,,(v"), fI"(M(R)) = fI~4" (M), satisfies
fAq™ () ~ 0 on YY(M). Hence, we have f(y"(2)) ~ 0, so that 7,(f7(v"(2))) ~ 0, where 7 = {7}
is the chain map associated with 98 = DR(MT,DT). Now it is possible to show 7, (fX (v (0))) ~ v (D) on
X?(9). Indeed, let us consider K = K(y™(20)) and the product cell-complex K x {0,1, I} together with
chain map 6 defined on the base and top of K x {0,1,1} to XV(9) as O(c* x 0) = o* and O(c* x 1) = 7, fro®
for each simplex o* of K. We may extend 6 as a chain map on K x {0,1,} in exactly the same way with
the process stated in the proof of Theorem 0.4.1. (In Step 4, substitute 73 fxo” for 7,0* and o for 7/ (c%).)
Then we have 7, (f7 (7" (2))) ~ 4™ (W) on X?(M), so that 4" (W) ~ 0 since 7, frny" (W) ~ 0 on XV (M).
Since 4™ is a Vietoris cycle, y"*(20) ~ ™ (Mt). Thus 4" (MWL) ~ 0 on X (M), so v ~ 0. [ |

Analogue of Sperner’s Lemma

Nikaido (1959) treats a theorem which may be considered as an extension of Sperner’s lemma based
on Vietoris-Begle mapping theorem. Let X and Y be compact Hausdorff spaces. Suppose that Y may be
identified (under homeomorphism) with n-dimensional simplex (a’a! - - - ™) in Euclidean (n+1)-space R"1.
Moreover, assume that there is continuous onto function f : X — Y. For each k-dimensional face a® - - - a'*
of a®---a™, denote by [a% - - - a’*] the set of all convex combination of points of {a°,...,a*}. In this section,
we call f=1([a% ---a’]) a k-face of X. For point x of X, there exists the smallest dimensional face a® - - - a’*
such that f(z) € [a® - --a*], the carrier of f(x). We also call such f=1([a% - --a’*]) the carrier of z (Figure
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9).

A

a' a*

f-l( [a' az])

Figure 9: Faces and Carriers

Let us consider a covering Dt € Cover(X) of X and Vietoris Mt-complex XV (). Denote by K(Y) the
simplicial complex K ((a’a’ ---a™)). Suppose that there exists a chain map 7 = {7,} on chains of K(Y) to

chains of X*(9M), 7, : Co(K(Y)) — CF (M), satisfying the following two conditions:
(T1) 7g(a®---a*) C f=Y([a% ---a']) for any k-face a® ---a’ of Y.
(T2) 7o(a') is a single point for each vertex a’ of Y.

We can always construct such 7 when f is a Vietoris-Begle mapping. (The same process with the construction
of Vietoris-Begle barycentric subdivision in Theorem 0.4.1 may be utilized.) Operator 7 may be considered
as a generalization of the usual barycentric subdivision. If X =Y and f is the identity mapping, it is clear
that chain map Sd satisfies conditions (T1) and (T2).

A wvertez assignment v is a mapping on X = Vert(X?(9)) to {a’,al,...,a"} = Vert(K(Y)) such that for
each z € X, v(x) is a vertex of the carrier of f(z). Obviously, v is a simplicial mapping on X" (1) to K(Y),
so that induces a chain homomorphism which we also denoted by v or {vg}, vy @ Cy(9M) — Cy(K(Y)).
Given vertex assignment v, we call n-dimensional simplex ¢” in XV(9%) regular if v, (c") = {(a%a’---a™)
or v,(o") = —(aa'---a"). It is also convenient to define a sign €(c™) of an m-simplex of XV (M) for
each m = 0,1,...,n, as €(c™) = 1 if v, (c™) = (aa'---a™), e(c™) = —1 if v, (0™) = —(a%al ---a™),
and €(c™) = 0 otherwise. In the next lemma, we use J as an index set for all n-dimensional simplexes in
X ()14

Lemma 0.4.4: (Nikaido 1959: Sperner’s Lemma) Let 7,((a’al---a")) = > jesajoy, where 7 denotes
the chain map defined above. Then 3, ; aje(0}) # 0. Especially, there exists at least one regular simplex

for an arbitrary vertex assignment.

PROOF : Note that in the above expression, 7, ((a®a---a")) = > jes oy, the value of 7, 37, ; oo,
is a finite sum by definition of the chain map, so that o; = 0 except for finitely many j € J. By condition

(T2), the lemma is clearly true for n = 0. In the following we show the lemma by using the mathematical

14Recall that we treat only finite chains, so that in the formal summation all but a finite number of coefficients are 0.
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induction over n. Let K be an index set for all (n — 1)-dimensional simplexes in X (91). We call (n — 1)-
dimensional simplex ¢"~! in X V(M) regular if vy(c" 1) = (a' -+ a™) or vy(o™" ') = —(a'---a™). Assume
that the lemma is true for n — 1, i.e., for f restricted on f~1([a!---a"]) to K({a'---a™)), T restricted on

chains of K((a'---a™)), and an arbitrary vertex assignment v on X to {a'---a"},

raca((at-am) = 3 Bre(of?
keK

where the summation is taken over all k € K for the sake of notational simplicity. (There is no problem since
e(op ™)y =0forall o' ¢ XU(9M) N f~1([a* - a"]) by the definition of €.) For our purpose, it is sufficient

to show that
> aje(o]) = Bre(op !

jeJ keK

(Step 1) First, let us see that

D ageel) = a; > [(oph)  (oe(op ™,

JjeJ jeJ keK

where [- : -] denotes the incidence number. Indeed, when o is regular, there is one and only one regular
(n—1)-face o' ! of of. Let (o}~ YYo= (up ). IE[(op 1) (¢7)] = 1, then by using a certain point ug € X,
we may write (o) = (uoui ---un). Hence, v,(0}) = (v(ug)v(u1)---v(un)) = £(a®a’---a™) if and only if
V(o) = (v( 1) - -v(vy)) = £(at - --a™). Therefore, €(o}) = (o). If [{(op ™1 : (07)] = —1, then we

) = ( v(up)) = £(aat---a") if and only if
Vp—1(op ™) = (v(uy) - - v(vn)) = F(a* - - - a"). Therefore, e(of) = —e(o}™ ). In each cases, we have €(or) =
Srerllor™ (o ey ). When o is not regular, we must show that Srerllor ™) (U?)]e(azfl) =0
even if o7 has regular faces. Suppose that o' is a regular face of o} and let (el = (ug - up).
There is a point ug of X such that Vert(o}') = {uo,u1,...,un}. Since o7 is not regular, there is an m
such that v(up) = v(un,). Let o7 ~' be the face of o? whose vertices are {ug,u1,...,un} \ {um}. Let

may write (o7 —(uouy -+ up). Hence, v,(0}) = —(v(uo)v(us

(o1 = (wy -+ - wy). Clearly, o7 has exactly two regular faces, ol " and op . Then, if [(o7 1) : (o] =1
and [(o} 1) (07)] = £1, we have (o) = (uou1 -~ up) and (07) = E(upmwr - wy). Since (uguy -+ up) =
— (U U1 -+ Uy~ 1UQUpn 41 * + * Up ), WE have (Upmwy - - wp) = £(UoU1 -+ Up) = F(Un Ui - Um—1U0Um+1 - - Un),

so that (v(wi)v(w2) - v(wn)) = F(v(ur) - V(Up-1)v(uo)v(tm+1) -+ v(un)) = Flv(ur)v(uz) - --v(u )>- It

follows that €(0] ') = Fe(o!!). In exactly the same way, if (o] ") : (07)] = =1 and [(o} IR o)) =

we obtain that e(o} ') = fe(o}""). Therefore, we have [(o]" ') : (of)e(oy™ B+ [op (of)e(oy ™ 1) = O
in all cases, so that 3, [(op ") (of)]e(or™ hy=o.

(Step 2) Next, we see that

Yoo ) Lop ) (op)le(op™ ) = Y Buelo

jedJ keK keK

Note that since 7,((a”---a")) = 3, ; a0, we have

On(Ta((@®--a™) = 0, ajol) =D a;0n(0f) =D a; Y [(op ")t (o)]op .

jeJ jeJ jeJ keK

Moreover, since 07 = 79, we also have

an(Tn(<ao ceah))) = Tn—lan(<a0 ea)) = Z(_l)iTn—l«aO RY AR a")),
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where the circumflex accent denotes the omission of vertex a’. It follows that
n
> oY o) s (oh =3 (D)@ atam)),

Since 1,,—1({a®---a’---a™)) C f71([a®---,a’,---,a"]) (Condition (T1)), by considering the fact that each

0271 appearing in the formal Summation Tn,1(<a0 ce-a"---a™)) except for i = 0 cannot be regular, the

1 .

coefficient of each regular o7 ~! (k € K) must equal to its coefficient in 7,_1({(a'---a™)), so that we must

have
>_asllei™h) (o)) = By
j€T
for each regular o' (k € K). Since e(a} ") = 0 for each ;"' that is not regular, we have
> o; Sl deplee) = X el
jeJ  keK keK

0.5 Eilenberg-Montgomery’s Theorem

By combining Lemma 0.4.4 with Vietoris-Begle mapping theorem, we obtain the following coincidence
theorem. Though the result may be considered as a special case of Eilenberg-Montgomery-Begle’s fixed

point theorem, we prove it directly and use to show a simple version of Eilenberg-Montgomery’s theorem.

Theorem 0.5.1: (Nikaido 1959) Let X be a compact Hausdorff space and Y a set homeomorphic to

01...

finite-dimensional simplex a”a a™. Suppose that there are two continuous mappings f and 0 on X to Y,

one of which, say f, is a Vietoris mapping. Then there is a point z € X such that f(z) = ().

PROOF : Let us identify Y with [a®al---a™]. Then every point y € Y may be uniquely represented as
y =Y oyia’, where y; > 0 for all 4, and ) ;" jy; = 1. In the same way, we may represent f(z) and 6(z)
as (fo(x),..., fu(z)) and (Bo(x),...,0,(x)), respectively. Denote by F; the set {x € X|fi(z) > 0;(x)}. It is
easy to check that for each k-face a® ---a® of Y, f~1([a% ---a']) C U?:o Fj,. Then we may define vertex
assignment v as v(z) = a* for a vertex a* of the carrier of x such that v(x) € F;. Since for Vietoris mapping
we may construct chain map 7 in Lemma 0.4.4, we may obtain regular n-simplex ¢” in XV9%. Therefore,
there is at least one M € 9% such that M N F; # 0 for all i = 0,...,n. Now, assume that (;_, F; = 0. Then
the family {Ff = X \ F;|i =0, ...,n} may be considered as a covering of X. If we apply the same argument
for M to {Ff = X \ F;Ji = 0,...,n}, we obtain an element of {F¢ = X \ F;|i = 0,...,n} that intersects
with all F}’s, which is impossible since Ff N F; = () for all i. Hence, we have (", F; # 0. Now, it is easy to
check that any element = € (), F; satisfies f(z) = 6(z). ]

By using Theorem 0.5.1, we can easily obtain the following simple version of Eilenberg-Montgomery fixed

point theorem.

Theorem 0.5.2: (Eilenberg-Montgomery Fixed Point Theorem: Finite Dimensional) Let Y be a set

Oal...

homeomorphic to finite-dimensional simplex a a™. If p:' Y — Y is an acyclic valued correspondence

having closed graph, then ¢ has a fixed point.

Proor : Let X be the graph of ¢, G, C Y x Y. Since ¢ has closed graph, G, is a compact Hausdorff
space. Consider two projections f: X =G, 3 (z,y) =z €Y and §: X =G, 3 (z,y) —»y €Y. Since ¢ is
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acyclic valued, f is a Vietoris mapping. Therefore, by Theorem 0.5.1, there is a point z* € X =G, CY xY
such that f(z*) = 6(z*). This means, however, the first coordinate and the second coordinate of z* are

identical, i.e., z* may be represented as (x,x). Hence, we have (z,z) € G, so that z € p(x). [ ]

Of course, the above theorem includes Brouwer’s fixed point theorem.

0.6 Lefschetz’s Fixed Point Theorem and It’s Extensions

In this section we treat compact Hausdorff lc space X. The homology groups of X are isomorphic to the
corresponding groups of a finite complex (Theorem 0.3.4), and classical results of ?) and ?) may be shown
to be extended (?) in such cases.

Lefschetz number of continuous mapping f : X — X is the summation of trace of homomorphisms,
trace (f,) : HY (X) — HY(X),

oo

(0.8) Z(fl)itrace(fi)

i—0
which is well defined since all HY(X) are finite dimensional and HY(X) = 0 for all ¢ sufficiently large.
Intuitively, for every dimension i, the basis of C?(t)’s (hence, of HY(9M)’s) are given by i-dimensional
simplexes in XV (1), so that if f maps all points in a certain simplex completely to other simplexes, the

trace of linear mapping f; should necessarily be 0 (Figure 10). The Lefschetz’s fixed point theorem is

Figure 10: Lefschetz Number 0

nothing but a restatement of this intuitive observation, i.e., if there is no fixed point, the trace of all such
linear functions should be equal to 0.
The purpose of this section is to relate this profound algebraic features of fixed point arguments with our

fixed point theorems and methods for the general Kakutani type mappings.

Convex Structures and Mappings of the Browder Type

Before we relate Kakutani type mappings with arguments for Lefschetz’s fixed point theorem, we see how
methods for Browder type mappings may be recaptured through the framework of Cech type homology
theory.
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Let E be a Hausdorff space on which a convex strucrure, (a concept of combination among finite points
with real coefficients), is defined, and let X be a non-empty compact subset which may not necessarily
convex. We say that mapping ¢ : X — 2% is of class 4 if p has a fixed point free convex extension having

local intersection property on X \ Fixz(p). Figure 11 represents a typical situation for mapping ¢ : X — 2%

Figure 11: Mapping of class &

of type %, where x and 2’ are not in Fix(p). If X is convex, then a class % mapping is nothing but a
mapping of the Browder type.

The local intersection property on X \ Fix(yp) for a convex extension of mapping ¢ of class % enable
us to replace the relation among open coverings of X \ Fix(y) with convex combination of points. See
Figure 12, where y and y’ are points in convex extensions of p(z) and ¢(z’), respectively, satisfying the local

intersection property near x and z’. If neighbourhoods of z and 2’ have an intersection point in X \ Fix(p),

X\ Fix (9)

Figure 12: Intersections and Convex Combinations

then the convex conbination of y and 3’ belongs to X since there is a point z € X \ Fix(p) such that both
y and 3’ belong to a convex extension of ¢(z).

For mapping ¢ such that Fix(p) = 0, then, such neighbourhoods form a covering of X and convex
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combination of points (y, ¥, etc.,) constructs a complex which may be considered as an approximation of

X (See Figure 13). Clearly, the complex may also be characterized as the nerves of the covering formed by

Figure 13: Realization of Cech Complex

neighbourhoods of z, x’, etc. Note that the partition of unity for the covering formed by neighbourhoods of
points, z,z’,..., say a: X — [0,1], & : X — [0,1], ..., gives a continuous mapping on X to the complex,

say K, formed by points y,v/, ..., as
X3z al@)+d(z)+--- € K|

The continuous mapping restricted on | K| to itself, however, never has a fixed point since by the property of
class Z mapping ¢, x* € U(z), z* € U(a2'), ..., (neighbourhoods of x, 2/, ..., resp.), means y, ¢/, ..., belong
to the fixed point free convex extension of p(z*), so that 2* cannot be any convex combination among points
Y,y , .... As we can see below, for such continuous mapping f¢, the Lefschetz’s fixed point arguments may be
applicable, hence, for mapping ¢ of class scmathB, the trace of homology mapping f : H; (|K|) — H; (|K])
for each ¢ = 0,1,2,..., of f¥, (say, a certain kind of linear approximation of ¢), is 0 for sufficiently fine K

as long as ¢ has no fixed point.

Convex Structures and Mappings of Class .7

In the last part of Chapter 2 in ?), the author treated a wide class of mappings, the Kakutani type, to
which we have seen that (1) the fixed point property holds, and (2) a directional structure on which the dual
space representation of ¢ has local intersection property as long as ¢ has no fixed points may be definable.

Assume that on space X there is a convex structure (Dx, hx,{fa|A € #(X)}). We say that a mapping,
0 X — 2%\ {0}, is of class ¢ if for each x € X, there is a closed convex set K, such that (1) (z ¢
¢(z)) = (z ¢ K,), and (2) there is an open neighborhood U, of x satisfying that Vz € Uy, ¢(z) C K,.'5
Note that for mapping ¢ of class J#, each neighborhood U, of x may be chosen arbitrarily small. Of course,
class J# mapping is nothing but the Kakutani type mappings since for each mapping of the Kakutani type,
for all x € Fix(yp), we may set K, as K, = X.

For mapping ¢ : X — X of class JZ] let us define the Lefschetz number of ¢ in a generalized sense. Since
X is compact and Hausdorff, for each mapping ¢ : X — 2% of class %, there is at least one covering

15Since K, is closed, we may suppose U, N K, = () without loss of generality as long as © ¢ K.
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M = {M,...,M;,} of X such that for each i = 1,...,m, there is a convex set K; satisfying that (z €
M;) = ¢(z) C K;. As stated above, 9t may be chosen arbitrarily small, so that we may suppose that
M < "Ny, where DNy € Cover(X) is the covering for lc space X stated in Theorem 0.3.4, (a). It is known
that the nerve of any covering 9t < *M < ™My gives the finite dimensional (ordinary simplicial) homology
group which is isomorphic to HY(X) for any dimension n. The isomorphism is induced by the composite
of mappings, 5, ,, : C5(*Mg) — C2(Mo), the projection o™ b CUOM) — CS(IM), and the inclusion
h,™ to define the mapping between cycles as 0, () = ¢ 0 p, 0 (2 0 h, (2(DM)). (See the proof of lemma 2
in Begle (1950Db).)

Let 91 = {Ny,...,N,} be *N. Take a1 € Ny,...,a, € N, and b1 € @(ay), ..., by € p(a,) arbitrarily
and denote by A and B respectively the set {ai,...,a,} and {b1,...,b,}. Denote by K(A) the complex
with vertices in A such that a;, ---a;, € K(A) iff ﬂﬁzl Ni; # 0. Clearly, K(A) is isomorphic to the nerve
of covering 1, so that for an arbitrarily small refinement B of *), there exists homomorphism 6,, between

cycles defining isomorphism between homology groups,
(0.9) On : Z2(X) = Zu(K(A))

for any dimension n, where Z*(X) denotes the set of all n-dimensional Vietoris cycles on X and 6,(z) =
P 0 D 0 G0 hy (2()).

Since DT is a star refinement of M1, the complex, K(A), may be considered as a subcomplex of X (9).
Define an abstract complex, K (B), with the set of vertices, B, as by, - - - b;, € K(B) iff co{b;, : j =0,...,£} C
X. Then, we may obtain a simplicial mapping 7 : K(A) — K(B) such that 7(a;) = b; for each i = 1,...,n.
Moreover, under convex structure on X, by taking B’ D B sufficiently large, the restriction of fz/ on
K (B), we may obtain a continuous mapping r on standard realization of K(B) into X. Hence, we have
homomorphism r,, o 7, 0 8,, : HY(X) — H?(X) whose trace is well defined for each dimension n. Note that
these mappings depend on how we chose 9%, B, A, B. For mapping ¢ of class J; define Lefschetz number
A(p) as the minimum of natural numbers given by such traces as,

o0

(0.10) A(p) = min (—1)* trace (r; o 7; 0 ;).
m,py,A,B Pt

We can verify that this number also characterize the existence of fixed points in exactly the same way as
the ordinary Lefschetz number even for the wide class of mappings, #. All we have to show is that if ¢ of
class % has no fixed point, there is at least one set of 9, A, and B under which trace (r; o 7; 0 6;) = 0 for
any dimension i. It would be a routine task, however, if we recognize the definition of 6,, (i.e., all we have

to consider is B-simplexes which may be taken as small as possible.)

Acyclic Valued Directional Structures and Mappings of Class 2

Arguments in the previous subsection for a generalization of Lefschetz’s fixed point theorem may also be
applicable to cases such that each K, characterizing the mapping of class /¢ is not convex but acyclic.

Let X be a compact Hausdorff Ic space. We say that a mapping, ¢ : X — 2%\ {0}, is of class Z if for each
x € X, there exists closed acyclic set K, such that (1) (z ¢ ¢(x)) = (x ¢ K,), and (2) there is an open
neighborhood U, of z satisfying that Vz € U,, ¢(z) C K,. As before, since K, is closed, we may suppose
U, N K, = 0 without loss of generality as long as z ¢ K,. Note also that for mapping ¢ of class J#; each
neighborhood U, of x may be chosen arbitrarily small. In standard cases, non-empty convex sets are acyclic,
so that the discussion for class Z mapping below may also be considered as a generalization of the previous

argument for class ¢ mappings (Figure 14).



26

Figure 14: Mappings of Class £ and &

Since X is compact and Hausdorff, for mapping ¢ : X — 2% of class 2, there is at least one covering
M = {My,...,M,,} of X such that for each i = 1,...,m, there exists acyclic set K, satisfying that
(z € M;) = (¢(z) C K;). Since Mt may be chosen arbitrarily small, we may suppose that 9t <D,
where 9y € Cover(X) is the covering for lc space X stated in Theorem 0.3.4 (a) as before. The nerve of any
covering D < Mt < N provides finite dimensional simplicial homology group which is isomorphic to H} (X)
for each dimension n. The isomorphism is induced by composite of mappings, ©%,,, : CS(*I) — CY (M),
projection p2* ™ ¢l CU(*MY) — CS(*M), and inclusion h, ™™ as 0,,(2) = ¢4 0 p, 0 (2 0 hp(2(N)).

Let k be the dimension of the nerve of 1. We shall define a sequence of refinements of 9t
(0.11) Mo <My < ISP S DG S Dyt IMITM MM N

as follows: Let M1 = M. For £ such that 0 < ¢ < k, define M, as a refinement of *MTy,; such that
for each compact acyclic K; € {Kj,...,K,,}, any ¢-dimensional Vietoris 9M¥,-cycle of K; bounds a chain in
Mty of K;. (This is always possible by Theorem 0.3.2.) Note that for each pair of 9%, and 9,4, and
dimension n, homomorphism 0+ = o p,, o ¢4 o h,, between C2 (M) and CY(M,) which induces the
isomorphism among homology groups exists.

Let us define a chain homomorphism 7 = {7,} on the k-skeleton of XV(91;) to X" (D). At first, denote by
£ ={Lo,L1,...,Ls} the cover *M. By definition of ©%,,,, ¢4, (L;) = z1, € L; and there exists an M; € 9t
such that St(L;; £) C M;. Define a; as a; = xr, and K,, as the corresponding K; for each i = 0,...,s.
Then we have for each x € L;, p(x) C K,, for all i. With respect to a;, fix a point b; € p(a;) C K,, for each
1.

For 0-dimensional simplex o® = (2°) of X¥(9My), the image Oy 0 0" o - 0 O}°(x°) is by definition one
of points ao, ..., as, say a;. Define 79(c%) as m(c?) = b; and extend it linearly on C¥ (D) to C¥ (M) C
Cy(OMm).

Next, for 1-dimensional simplex o! = (z%2') of X(9), we may write 79d(c!) = 79(2° — z') as b; — b;,
where b; = 79(z°) and b; = 70(z!). Of course, b; — b; may also be considered as an 9My-cycle (in the reduced
sense).'® Hence, by definition of 9%, relative to 91, we have a My-chain ¢! such that d(c') = b; — b;
(Figure 15). Define 1 (co1) as 71 (o!) = ¢! and extend it linearly on C?(9g) to C¥(MYy) C CY(M). Clearly,
0711 = 190 holds.

16 Every point of X may be considered as a 0-dimensional 9tp-simplex. Note also that in Theorem 0.3.2, 0-dimensional cycles
should be taken in the reduced sense.
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Figure 15: Class 2 mapping and 2Jt;-chain

Now, assume that for all dimension ¢ < ¢, (2 < ¢ < k), 7, is defined on C(9g) to CF (M) C CF (M)
and 07, = 7,-10 holds. Then for ¢-dimensional simplex o of X (), chain ¢ = 7,_19(c*) is well defined.
Since d(c) = d1y_10(c") = 74_200(c*) = 0, c is indeed M,_;-cycle. Hence, by definition of M, relative
to My, we have a Miy-chain ¢’ such that J(c’) = c. Define 74(c’) as 74(c’) = ¢’ and extend it linearly on
Cy (M) to CP (M) C CY(M). Clearly, 01y = 1410 holds.

Hence, by induction, we have successfully obtained the chain map 7 = {7,} on the k-skeleton of XV (91)
to XV (My41) = XV (M) C XV(M), i.e., we have

(0.12) 740 CL (M) — CL(M) C CL(M)

for all ¢ =0,1,..., k. The homology groups of X”(:%) and X (D) are isomorphic under the isomorphism
induced by "+1"0--.001°. Since both of them are isomorphic to the corresponding group of a finite complex,
trace (7,) is well defined for all ¢ and > ;2 (—1)" trace (r;) is finite. Though definition of 7 depends on 9,

DN, and, especially, set A of all a;’s and B of all b;’s, we may define as before the minimum of such values,

o0

(0.13) A(p) = min (—1)" trace (7;)
om,n,A,B Pt

as an extended Lefschetz number for mapping ¢ of class 2. By considering the definition of #+1%’s, we

obtain the following extension of Lefschetz’s fixed point theorem.

Theorem 0.6.1: (Extension of Lefschetz’s Fixed Point Theorem) Let X be a compact Hausdorff lc
space. Mapping ¢ of class & has a fixed point if A(¢) # 0.
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