12 Fized Points and Economic Equilibria

Mathematically, all arguments in this book are based on ZF, the
Zermelo-Fraenkel set theory (the most standard axiomatic set theory) writ-
ten by first-order predicate logic (one of the most popular formal languages).
Such a framework, as our basic standpoint, is necessary because our basic
theory must be sufliciently strong to incorporate not only our ordinary
mathematical arguments but also all necessary procedures in describing
the theory itself as formal objects. Indeed, the list of axioms in Zermelo-
Fraenkel sot theory, which can be used to develop almost all of our ordinary
mathematics, is also simple enough to be characterized by standard finitistic
or recursive methods that are obviously incorporated in ZF.

Of course, until Chapter 9, readers nced not be concerned about what
axioms our basic theory depends on. The basic mathematical concepts and
methods in this book (introduced in the next section) presume a merely
natural and naive interpretation of ordinary language. Note, however, that
sueh sot-theoretic axioms and their finitistic or recursive methods are not
special concepts for a certain field of mathematics, but rather relate to
the onc thing that never changes in our development of knowledge: the
linguistic feature of mathematics.

1.3 Basic Mathematical‘Concepts and Definitions

The mathematical concepts and definitions that are necessary but not
immediately connected with this book’s fixed-point or economic equilibrium
arguments are gathered into three parts: this section for general fundamen-
tal notions, the first section of Chapter 6 for an introduction to algebraic
topology, and the first section of Chapter 9 for concepts in axiomatic set
theory and mathematical logic. The main purpose of these sections is merely
to give definitions of mathematical terms.

In principle, all the concepts and theorems in this book can be explained
without any presupposed notion in mathematics and are completely
supported in the book. Consequently, all the mathematical topics could
be arranged from the basic to the advanced ones so that no theorem is used
to prove other results before its own proof is presented. Such an attempt,
however, would almost certainly force readers to study several boring
mathematical textbooks before reaching the special topics of this book that
are not necessarily based on mathematical details and proofs. Therefore,
throughout this book, several mathematical theorems and properties are
treated (at first) as given, and their proofs are given in later chapters.
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Moreover, to facilitate the descriptions of ordinary notions in mathematical
economics in Chapters 2-5, readers are expected at least to have a hasic
knowledge of Euclidean spaces equivalent to college freshman calculus and
linear algebra.

In this section, with the definitions of mathematical terms in elementary
topology (Subsection 1.3.1), I will introduce two important basic theorems:
the partition of unity theorem (Subsection 1.3.2) and the separation
hyperplane theorem (Subsection 1.3.3).%

1.3.1 Sets, topologies, and notational
conventions

All the mathematical arguments in this book are based on Zermelo-Fraenkel
set theory with Axiom of Choice, written by first-order predicate calculus.
As stated before, these comprise one of the most oommon'pairs of an
axiomatic theory of sets and a basic formal language. 1 merely note here
that the following chapters are based on a very standard foundation of
mathematics. The formal treatments of the axiomatic set theory and formal
language are giyen in Chapter 9.1 We also use the notions of Bourbaki
(1939) (e.g., structures and inverse and direct limits) in later chapters and
Kelley (1955) (many definitions in topology), as long as the underlying
set-theoretic differences are not significant.

Sets

Theory of sets is a theory that has only two predicates, € and =,
elementhood and equality. We often denote a set by the form {z|P(z)},
where P(z) denotes a property of x deseribed under our formal language
(first-order predicate calculus). Notation {z|P(z)} represents the class of
objects having property P which, in some cases, may not be treated as
a proper mathematical object or a set. The axioms of the theory of sets
(e.g., ZF with Axiom of Choice) give rules for a property under which class
{z|P(x)} may be called a set. (A careless use of such properties may cause

%In this book, adding to these two theorems, Brouwer’s fixed-point theorem (in
Chapter 2) will be introduced and repeatedly used before its proof is presented. The
proof of Brouwer's fixed-point theorem is given in Chapter 6. Proofs for other theorems
are given in Mathematical Appendices I and IL.

0 For references, see also Fraenkel et al. (1973), Kunen (1980), Jech (1997), etc.
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problems like the well-known Russell Paradox.!') For example, the class
of all natural numbers, N = {0,1,2,...}, the family of two sets x and y,
{z,y}, the ordered pair of two sets x and y, (z,y), the class of all subsets of
set A (the power set of A), 2(A) = {X|X C A}, and unions and products
for the family of sets (sce below) are assured to be sets under the axioms
of ZF.

Family of sets

For family (sct of scts) %, we denote by |J% the union of elements of
. 1f the clements of family % are indexed by set I as % = {Usli € I},
we often write |J,o; U instead of [J%. If family % = {U;li € I} is not
empty, we denote by (% or (e, Ui the intersection of elements of %.
Denote by A\ B the set-theoretic difference between two sets A and B, i.e.,
A\ B = {z|z € A and = ¢ B}. Given set X and non-empty family {U;]i €
I}, the following important relations hold among unions, intersections, and
differences: X \ Use; Ui = Mier(X \ Us) and X'\ Nicr Ui = User(X\ Ui)
(De Morgan’s laws).

Cartesian products and relations

Civen two sets, X and Y, the Cartesian product (or direct product) X XY
is the set of all ordered pairs (2, %) such that = € X and y € Y. A relation
is a set of ordered pairs. A subset of Cartesian product X x Y of X and
Y is called a relation on X to Y. For relation ¢, the domain of ¢ is the
set dom (@) = {z|3y. (z,y) € ¢}, and the range of ¢ is the set ran (p) =
{y| 3z, (x,y) € ¢}. If @ and 4 are relations, the composition of p and 1 is
the relation ¢ = {(z, z)| 3y, (,y) € ¢ and (y,z) € ¥}, and ¢ is denoted by
1o . For relation ¢ on X to Y, the upper section of p at x € X (z-section
of @) is the set {y|(z,y) € @}, which is denoted by w(z). Similarly, the
lower section of ¢ at y € Y is the set {z|(z,y) € ¢}. We define oL for
relation ¢ as ¢! = {(z,y)| (¥,z) € ¢}. Then, the lower section of ¢ at
y € ran () is nothing but ¢~ (y), which is the upper section of o laty.

Il Let T = {z|x ¢ z}. Consider whether T is an element of T. If T € T, then by the
definition of T, we have T' ¢ T, a contradiction. Hence, we have a proof for T ¢ T. On
the other hand, T ¢ T implies that T satisfies the sufficient condition for an element of
T. Therefore, we have also a proof for T € T. It follows that for the consistency of the
theory, we cannot treat such T as a set (object) in the domain of discourse.
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For two relations ¢ and 1, @ is a restriction of v if dom () C dom () and
@(z) = ¢(z) for all z € dom (), and ¥ is an extension of ¢ if p C V.

Functions and correspondences

A function f on X to Y, denoted by f: X — Y, is a relation on X to Y
such that dom (f) = X and every upper section is a singleton. Function
@ on X to 2Y, where 27 denotes the family of all subsets of Y, is called
a correspondence on X to Y and is also denoted by ¢ : X — Y or, more
precisely, by ¢ : X 3 x + @(z) C Y. For function f on X to Y, the unique
element of the upper section (not the singleton itself) at z is traditionally
denoted by f(z), so we write f : X — Y and f: X 32 — f(z) € Y.
Element f(x) is also called the image of z under f. On the other hand, the
lower section of f at y € Y, f1(y), itself is called the inverse image of y
under f. Function f : X — Y is said to be injective (one to one) if for all x
and 2’ in X, z # @’ means f(z) # f(z') and is said to be surjective (onto)
if for all y € Y there is element x € X such that y = f(z). Two sets X and
Y are said to have the same cardinality if there is a bijective (injective and
surjective) function f: X — Y. A set having the same cardinality with a
subset of N = {0,1,2,...} is called a countable set.

Binary relations

A binary relation on X is a subset of X x X. For binary relation Z C X x X,
we customarily write 2%y instead of (z,y) € #. Binary relation % on X
is said to be a preordering if it is reflezive (V& € X,xZ%x) and transitive
(Vo,y,2z € X, (x%y and y#z) == xAz). The pair of X and preordering
Z on X, (X,Z), is called a preordered set. A directed set is a non-empty
preordered set such that for each of its elements i, j, element k satisfies k#i
and k% j. Preordering % on X is said to be an ordering if it is antisymmetric
(Vz,y € X, (x Ry and yZz) => = = y). If preordering # on X is symmetric
(Va,y € X, (zRy) = yZz), it is called an equivalence relation on X.
Given two preordered sets (X, %) and (Y, 2), mapping f: X — Y is said
to be monotone (isotone, order preserving) if %z implies f(x)2f(z) for
each x,z € X.

Axiom of choice and products of a family of sets

Given family (set) of sets {X;|i € I'}, the Cartesian product of the family
of sets, [[,c; X, is the set of functions on I to U,er Xi such that for each
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i € I, the image of i, z;, belongs to X;. Such a function, f: T — Usier X,
is called a choice function. The existence of at least one choice function
for each non-empty family of non-empty sets is assured in the theory of
sets as an axiom called the Aziom of Choice. If there is binary relation
9, on X; for each i € I, we may naturally define the product relation 2
on X = [[;e; Xi as f2g if and only if f(i)2;9(i) for all i € I. Product
relation 2 is reflexive, transitive, and anti-symmetric if all 2;s are reflexive,
transitive, and anti-symmetric respectively. Hence, (X, 2) is a directed,
preordered, and ordered set as long as all component spaces are directed,
preordered, and ordered sets respectively, where for the non-emptiness of
X and @, the choice axiom is necessary.

Topology

A topology on space (set) X is a family of subsets of X, .7, satisfying the
conditions that (1) X € 7, (2) 0 € 7, (3) for each non-empty finite subset
U C 7, the intersection (% = yeq U is an element of 7, and (4) for
each subset % C 7, the union | J% = Jyeq U is an element of 7. Pair
(X, 7) is called a topological space, and each element U € .7 is said to be
an open set in topological space (X, 7). The complement of an open set,
X\U,U € 7,is called a closed set. For each point x in a topological space,
set V including open set U 3 x is called a neighborhood of x. For subset A
of topological space (X, .7), we define the relativization T4 of 7 on A as
T4 = {UnNA|U € F}. (Verify that F4 is a topology on A.)

Closure and interior

By the definition of topology, it is clear that (1) @ is closed, (2) total space
X is closed, (3) the finite union of closed sets is closed, and (4) an arbitrary
intersection of closed sets is closed. For subset A of topological space X,
therefore, we may define the smallest closed set containing A, the closure
of A, as clA = N{B|A C B, B is closed in X}. In the same way, we may
define the largest open set contained in A, the interior of A, as int A =
U{B| B ¢ 4, B is open in X}.

Continuity

If (X,x) and (Y, Jy) are topological spaces, function f : X — Y is
continuous if, for each open set Uy € Jy, the inverse image of set Uy,
[ Y (Uy) = {x € X|f(z) € Uy}, is an element of Jx. The condition is
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equivalent to saying that at each z € X, for every open set U 3 f(x), there
is open set V 3 z such that the image of set V, f(V) = {f(z)|z€ V},isa
subset of U. (Since a set is open iff for each of its elements there is an open
neighborhood contained in the set, the latter condition is sufficient for the
former. For the necessity, use the property that f(f~'(U)) € U for any
UcCY.)Itiseasy toseethat if f: X — Y and g: Y — Z are continuous,
then their composition g o f is also continuous.

Convergence

A net in topological space X is a function § : D — X whose domain
(D,>) is a directed set. If D is the set of all natural numbers with the
ordinary > relation, net is called a sequence. Net S in X converges to
z* € X, if for each neighborhood U of z* there exists 7 € D such that
Vv >, S(v) € U. (Net § is said to be eventually in U.) Net (also called a
generalized sequence) is a useful concept to describe closedness, continuity
of mappings, etc., for general topological spaces in exactly the same way as
the notion of convergent sequence does in Euclidean spaces. One can verify
that set A C X is closed if and only if for every net in A converging to a
certain point z in X, x € A necessarily follows. Furthermore, we may prove
that function f : X — Y is continuous if and only if for everynet S: D — X
on X, net foS: D — Y converges to f(z*) € Y as long as S converges
to z* € X. (Use the second condition, YU > f(z),3V 3>z, f(V) C U, for
the continuity. The necessity of this third net-characterization condition is
trivial. For the sufficiency, define net S on the directed set of neighborhoods
of z* € X at which the second condition for the continuity is not satisfied.)

Subnet and cluster point

A subnet of net § : D — X is net T' : E — X such that mapping M
exists on directed set E to D satisfying T = S o M and the condition
that for all m € D element fi € E exists such that M(n) > m for all
n > 7. The condition is typically satisfied when M is monotone and for
all m € D element n € E exists such that M(n) > m. (More specifically,
when E is a subset of D such that for all m € D there is an element n € E,
i.e., E is a cofinal subset of D. Although this may seem a standard way
of constructing subnets, such a simple class of subnets is not sufficient for
all purposes, unfortunately.) For net S : D — X, point ¥ € X is called
a cluster point of S if for all neighborhoods U of z, for all ¥ in D, there
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is v = v such that S(v) € U. (Net S is said to be frequently in U.) One
may prove that if x is a cluster point of net § : D — X then there is a
subnet of S converging to z. (To see this, let 4" be the set of all open
neighborhoods of z directed by the inclusion, and for each N € 4 let Dy
be the cofinal subset of D such that S(v) € N for all v € Dy. Consider
mapping M : A x [[yc s PDn 2 (N, f) — f(N) € D on the product
directed set and subnet 7= So M. Orlet E C D x A4 be the set of all
pairs (d, N) such that S(d) € N under product ordering, define M on E to
D as M(d,N) = d, and consider subnet T' = S o M.)

Base for a topology

Let (X,.7) be a topological space. A base for topology .7, 4, is a subset of
7 such that the set of arbitrary unions of elements of %, {{J%|¢ c £},
equals .7 . A subbase for topology 7, .%, is a subset of .7 such that the set of
finite interscetions of the members of .7, { €| is a finite subset of .#},
is a base for topology .77. The concept of subbase (or base) for a topology is
important because it characterizes such properties as minimal requirements
in various topological arguments for a given topology. For example, we can
see that net S : D — X in X converges to z* € X if and only if for
every neighborhood U of z* belonging to a subbase for the topology, S is
eventually in U, :

Product topology

Consider family of sets {X;|i € I'}. If each X; is a topological space with
topology .7, the product topology on [, X; is a topology whose subbase
is the family that consists of set {f|f : I — UJ;c; Xi,Vi € I\ {j}, f(i) €
Xi, f(j) € U;} for some j € I and U; € 7. By considering the definition
of subbase, product topology may be characterized as the weakest topology
such that for every j € I, the projection pr; : [[,e; Xi 2 (-++ ,j,--+) =
z; € X; is continuous. It can also be verified that net S in product space
[l;c; Xi (the product set under the product topology) converges to z* if
and only if each net pr; oS in j-th coordinate space, X, converges to the
j-th coordinate z7 = pr;(z*) of z*.

Quotient topology

Assume that Z is an equivalence relation on topological space X . For each
2 € X, denote by [z] the equivalence class of z, i.e., [z] = {y € X|yZz}. The
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family of all such equivalence classes, {[z]|z € X}, gives a decomposition
(partition) of X, i.e., a disjoint family of subsets of X whose union is X.
Decomposition {[z]|z € X}, which is also denoted by X/Z, is called the
quotient set of X with respect to Z. On X to X/%, we may naturally
define function P : X — X/Z to assign each x € X to its equivalence class
[z] € X/Z. P is called the projection (quotient map) of X onto quotient sct
X/%. The quotient topology on quotient set X/Z of topological space X
is family {O| O C X/2, P 1(O)is open}, which is the finest topology such
that quotient map P : X — X/# is continuous.

Other concepts

For finite set A, we denote by §A the number of elements of A. The set of
real numbers is denoted by B. We assume that readers have basic knowledge
of the topological and algebraic features of R as a conditionally complete
ordered field.'> Denote by R (resp., by Ry ) the set of all non-negative
reals (resp., strictly positive reals) and by R™ the n-th product of the set
of real numbers. If there are no additional explanations, R™ is supposed
to have the product of the usual (order) topology of R with vector-space,
inner-product, and Euclidean-metric structures’ (n-dimensional Euclidean
space). For easily understanding this book, the reader needs the most basic
knowledge of Euclidean spaces.

1.3.2 Compact sets, open coverings, and
partition of unity

Since the open covering of a space is an extremely important concept
throughout this book, it is appropriate to use one subsection here to state
several inherent concepts and properties that are repeatedly used in later
chapters.

Let X be a topological space. A family of open subsets of X, {M;li €
I}, is said to be a covering of X if |J;c; M; = X. For two coverings,
M = {M;|i € I} and A = {N;|j € J} of X, A is a subcovering (resp.,
refinement) of .# , if and only if for all N; € ¥, there exists M; € .# such
that N; = M; (resp., N; € M;). Covering .# is said to be finite if A is a
finite set.

12If unsure, see Debreu (1959).
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Topological space X is compact if each covering of X has a finite
subcovering. Equivalently, it can be said that space X is compact if
and only if arbitrary non-empty family {F;|i € I} of closed sets in X
having the finite intersection property (every finite intersection among sets
in {F;|i € I} has a non-empty intersection) has a non-empty intersection.
The compactness can also be characterized through the convergence of nets
in the space.

THEOREM 1.3.1: (Net Characterization of Compactness) Topo-
logical space X is compact iff every net in X has a converging subnet.

PROOF: To sce that every net §: (D,>) — X in compact set X has
a converging subnet, use the finite intersection property of the family of
closures of sets A,,, = {S(n)|n > m}, m € D. To see the sufficiency, suppose
that every net in X has a converging subnet. Then for arbitrary family
{F;|i € I} of closed sets in X having the finite intersection property, if
we consider a net on the set of finite subsets of I directed by inclusion as
S F(I)3 A S(A) € ;e 4 Fi, the limit point of a converging subnet of

is easily seen to belong to all F;, 1€ 1. [ |

In Euclidean n-space, a closed bounded set is compact. (The fact is
known as the Heine-Borel covering theorem.)

In this book, we base many theorems on Brouwer’s classical fixed-point
theorem (Theorem 2.1.1) that may be applicable to all sets homeomorphic
to a non-empty compact convex subset of Euclidean space R™.13 So it is
useful to remember the next property on the homeomorphism between
compact spaces. (Topological space X is said to be Hausdorff if for all
z,y € X, z # y, two open sets U, and Uy exist such that € U,, y € U,
and U; NU, =0.)

THEOREM 1.3.2: (Isomorphism Between Compact Sets) A con-
tinuous bijection on compact space X to Hausdorff space Y is a homeomor-
phism.

PROOF: Let f: X — Y be a continuous bijection. (Note that by the
continuity of bijection f, Y is also compact and X is also a Hausdorff

13 Topological spaces X and ¥ are said to be homeomorphic if continuous bijection f :
X — Y exists such that f~! is also continuous. (Function f is called a homeomorphism
between X and Y.) One can prove that if X has the fixed-point property (i.e., every
continuous mapping on the space to itself has a fixed point), space ¥ homeomorphic to
X also has the fixed-point property.
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space.) We have to show that f~! is continuous. Consider net {y”} in Y
that converges to y* € Y. Since X is compact, net ¥ = {f~'(y")} in X
has a subnet {f1(y**)} in X converging to point z* € X. Since [ is
continuous, f(z*#)) must converge to f(z*), so f(z*) is a cluster point
of converging net {y*}; i.e., f(z*) must equal y* since Y is a Hausdortf
space. Tt remains to be shown that net {f~*(y”)} converges to z*. The
above argument ensures that every converging subnet of {f~1(y*)} must
converge to the same point, z* = f1(y*). If {f~!(2")} does not converge
to z*, again by the compactness of X, net {f~'(y”)} has a subnet that
converges to a point different from z*: a contradiction. -]

By definition, every closed subset of a compact space is obviously also
compact under the relativized topology. One can also prove that compact
subset X of topological space Y is closed if the topology of Y is Hausdorff.

Hausdorff space X is said to be normal if for any two closed subsets, A
and B, such that AN B = 0, there are two open sets, U4 and Ug, such that
Us D A, Ug D Band UsnUg = 0. From the definition, in normal space X,
every open neighborhood U of & € X clearly includes closed neighborhood
C of z. (Consider two closed sets, X \ U and {z}.) It is also easy to prove
that every compact Hausdorft space is normal. ¥

THEOREM 1.3.3: (Partition of Unity) Let X be a normal space,
and let % = {U,...,U,} be a finite covering of X. It is known that o
family of non-negative real valued continuous functions exists, fi : X —
Ry,....fn: X — Ry, such that fi(z) = 0 for all z € X \ U; for each 1,
and 3.1, fi(z) =1 forallz € X.

The family of functions stated in the above theorem is called a partition of
unity on space X subordinate to covering % . The theorem is an immediate
consequence of the so-called Urysohn’s Lemma on two closed subsets of a
normal space.!* A complete proof is given in Mathematical Appendix L.

1.3.3 Vector space duality and hyperplane

We denote by R? (resp., by R ) the set {(z1,...,%n)|z1 € R4y...,%n €
R} (vesp., {(z1,...,Za)|z1 € Riy,...,2n € Ry4}) in n-dimensional

14The proof of this theorem is easy when the topology of X is given through a metric
as in the Buclidean spaces. Let F;(x) be the distance from x to X \ U; and define f;(x)
as normalization Fi(z)/3 7_; Fj(x) for each i and z € X
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Euclidean space R". Readers are expected to have the most basic knowledge
of vector-space structure in Euclidean spaces.

A vector space over real field R is a set L on which mapping (z,y) —
z+yon L x L to L, called addition, and mapping (a,z) — az on R x
L to L, called scalar multiplication, are defined to satisfy the following
axioms: (In the following, x,y, z and a, b are arbitrary elements of L and
R, respectively.)

(1) (@+y)+z=2+(y+2)

(2) z4+y=y+u

(3) alz+y) = az + ay

4) (a+b)x =axr+ bz

(5) a(bx) = (ab)z

(6) 0, 0+r=a+0==x

(7) Ve,3—z, 2+ (—z) = (—2)+2 =0
(8) lz =2

Mapping f on vector space L over R to vector space M over R is linear if
flax +by) =af(z)+bf(y) forallz € L, y € L, and a,b € R.

For m points a1,...,2™ of vector space L over R and m scalars
ai,...,am in R, point z = 2:’;1 a;x' in L is a linear combination (under
coefficients ay,...,an) of points z!,...,2™. Points z',..., 2™ are linearly
independent if Z:Laﬁxi =0= a1 =0,a2 =0,...,a,, = 0. In other
words, points z', ..., ™ are linearly independent if no z* can be represented
as a linear combination of other points. More generally, if subset A of L is
such that no element z of A can be represented as a linear combination of
other (finite) points in A, then set A of the points is linearly independent.
If A is not linearly independent, it is linearly dependent.

Subset M of vector space L is a linear subspace of L if all additions
between points in M and all scalar multiplications of points in M are
also points in M. For subspace M of L, the subset of form z + M =
{x + 2|z € M} for some z € L is called an affine subspace of L. If A
is a linearly independent subset of vector space L over R, the set of all
linear combinations of points in A, L(A), forms a subspace of L. Linearly
independent subset A is called a basis (Hamel basis) of L(A). Linear
mapping on L(A) is uniquely determined by the images of elements of
the basis.

In vector space L over R, if m coefficients ai,...,a,, for m points

1 v :
z',...,z™ belong to R, and satisfy 221‘% = 1, linear combination
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E:-:l a;zt is called a conver combination (under coefficients ay, ..., )
of points z!,...,z™. Subset X of vector space L over R is conwves if all
convex combinations of two points in X are also elements of X. Given
set A of vector space L, co A denotes the set of all convex combinations
among points in A. One may prove that co A is the smallest convex sel
that includes A, which is also equal to the intersection of all convex sets
that include A. (Use the fact that an arbitrary intersection of convex sets
is also convex.'%)

A topological vector space over R is a vector space having a topology
on which the addition and scalar multiplication are continuous. (Since
(a¥zH +b7yC) — (a*z* +b*y*) = (aVzH —a*z*)+ (b7y° —b*y*), one can verify
that they are indeed jointly continuous.) Therefore, if A = {x1,...,2¢} is a
linearly independent subset of topological vector space over R, bijective
linear mapping f : R? 3 (a1,...,a¢) — ayx1 + --- + agzg € L(A) is
continuous. A family of neighborhoods of # € X, %, such that for each
neighborhood U, of x, member U of family % included in U, exists, is
called a neighborhood base at z. Neighborhood base at 0 € X is called
a 0-neighborhood base. This concept is important since the topological
features of a topological vector space are completely determined by a 0-
neighborhood base. A locally convex space is a Hausdorff topological vector
space with a O-neighborhood base consisting of convex sets.

For vector space E, real valued linear function f is called a (real) linear
form (or a linear functional) on E. The set of all real linear forms, E*, may
also be considered a vector space by defining (f + g)(z) as f(z) + g(x) and
(af)(z) as af(x). E* is called the algebraic dual space (or algebraic dual)
of E. On topological vector space F, the set of all continuous real linear
forms, E', is also recognized as a vector space and is called the topological
dual space (or topological dual) of E.*® The weak topology on E, o(E, E'), is
a topology whose subbase is constructed by sets of form {y € E|f(y) < a}
for some f € E' and a € R. It is the weakest locally convex topology under

15 Ag stated in Section 1.2, although the “convexity” concept in this book is often nscd
in the generalized sense, it may not be so harmful to give priority to the vector-space
interpretation over the generalized one when a vector space structure is explicitly given.
W For example, let R™ be the set of the countably infinite product of R and let R be
the subspace of R that consists of points whose coordinates are all 0 except for finite
components, By considering the duality operation, {(1,1,---), (1, y@n, 0,0 ,0)) =
lzy + o+ + lan for (@1, ,Tn,0,++-) € Roo, we can recognize (1,1,---) € R as an
algebraic linear form on Roq. The element (1,1,---) € R is not continuous, however,
if we relativize the product topology on R™ to Rec.
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which every f € E' is continuous. On the other hand, the topology on E,
whose subbase is constructed by sets of form {f € E'|f(y) < a} for some
y € E and a € R, is called the weak star topology on E’, o(E', F).

If f is a real linear form on vector space E, set H of form {y € E|f(y) =
o} for some o € R is called a hyperplane in E. In topological vector space E,
hyperplane H is closed if and only if it is associated with continuous linear
form f. We say that two sets, A and B, in vector space F are separated
(vesp., strictly separated) by a hyperplane if hyperplane H = {y|f(y) = a}
exists such that Ya € A,Vb € B, f(a) < a < f(b), (resp., f(a) < a < f(b)).
The next theorem is especially critical for economic arguments. (For the
proof, se¢c Mathematical Appendix I1. See also Schaefer (1971, p.64, 9.1).)

THEOREM 1.3.4: (First Separation Theorem) In topological vector
space E, if A is a convexr set whose interior int A s non-empty and B is
a non-empty conver set such that int AN B = §, then closed hyperplane H
exists that separates A and B. If both A and B are open, we may choose
H so0 that A and B are strictly separated.

THEOREM 1.3.5: (Second Separation Theorem) In locally convex
space E, iof A is a non-empty closed conver set and B is a non-empty
compact convex set such that AN B = 0, then o closed hyperplane ezists
that strictly separates A and B.

PROOF: Under the basic property of vector space topology, set —A4 =
{—ala € A} is closed. Since B is compact, we can also verify that B +
(—A) = {b+ (—a)|b € B,a € A} is closed. (Use a net and a converging
subnet in compact set B.) Then, there is convex 0-neighborhood U that does
not intersect with B+ (—A). (In the following, for subsets in a vector space,
such notations as A+ B, —A and B + (—A) = B — A will be used without
any explanations. If one such set is a singleton, we often write 2+ A instead
of {z}+ A.) Without loss of generality, we may assume U to be open. (Note
that the interior of a convex set is always open under vector space topology.)
Let W = UN—U and define V as V = (1/3)W = {(1/3)w| w € W}. Then,
A+V and B+V are two disjoint convex open sets satisfying all conditions
in Theorem 1.3.4, and thus the result is an immediate consequence of the
First Separation Theorem. |
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Notes on References

Since this is a research monograph, many theorems and arguments must
be supplemented with sources to establish priority or confidence. Al the
same time, I want this book to be readable as a text for graduate students
in economics who are concerned with rigorous mathematical arguments.
Therefore, in the main sections of this book, references to the literature
for every important (especially mathematical) theorem and concept have
been minimized as suggestions for further reading from an educational
viewpoint. References necessary for research-level arguments are given in
the last section of each chapter as Bibliographic Notes.



