

Ken Urai 平成 32 年 8 月 13 日

p.132, **Lemma 6.1.1** の証明について (8.13 改良版): 主張 (1) は使えません。しかし主張 (2) についての先の投稿のような修正も、うまくいかないようです。そこで、数学的帰納法の使い方を少し変えて、やはりダイレクトに証明し直してみました。主張 (2) は最後の方で、かなりそのままの形で使っています。

Proof: 【準備】 $M_0, M_1, ..., M_T$ を X の covering とする。その closed refinement を $C_0, C_1, ..., C_T$ とする。 以下屡々 closed refinement を covering に対して、その cover すべき範囲と呼ぶ。

 $[X = 0] \cap T = 0 \cap C$

T=0 のときは、それ自体が star refinement なので、レンマの証明は終わっている。

[X = T = 1]

 $T \ge 1$ のとき、 $\{M_0,...,M_{T-1}\}$ を、その cover すべき範囲 $C_0 \cup \cdots \cup C_{T-1}$ の covering と考えた場合の、レンマの証明が終わっているとする。そして、その意味での covering $\{M_0,\cdots,M_{T-1}\}$ の star refinement を $\mathfrak{N}_{T-1}^* = \{N_j | j \in J\}$ とする。これに新たに C_T あるいは M_T を付け加えたものは、当然 $C_0 \cup \cdots \cup C_{T-1} \cup C_T$ 即ち X の covering である。

ここで、 \mathfrak{N}_{T-1}^* と C_T を合わせた covering \mathcal{O} closed refinement を、更にとることができるはずである(以前のものより細かいものであるが、 C_T はそのままにできる)。 $\mathfrak{N}_{T-1}^*=\{N_j|j\in J\}$ の各要素に含まれる上記 refinement の閉集合の族を $\{D_j|j\in J\}$ で表す(当然 $D_j\subset N_j,\,j\in J$ という関係とする)。cover すべき範囲が変わっているが、依然として C_T はそのままにしてあるので、それと合わせて X を cover していることに変わりはない。

さて、ここで改めて \mathfrak{N}_{T-1}^* と M_t , その closed refinement としての $\{D_j|j\in J\}\cup\{C_T\}$ を元に、以下 $\{M_0,M_1,\ldots,M_T\}$ の star refinement を作ることを考える。

まず、 $\mathfrak{M}=\{\bigcup\mathfrak{N}_{T-1}^*,M_T\}$ という X の binary covering を考える。それに対して $\{\bigcup\{D_j|j\in J\},C_T\}$ が、その closed refinement になっている。そこでこれらを用いて、X の binary covering に対する通常の star refinement 操作を考える。即ち、 \mathfrak{M}^* を $X\setminus C_T$, $M_T\cap \operatorname{int}(\bigcup\{D_j|j\in J\})$, $\operatorname{int}(C_T)\cap \bigcup\mathfrak{N}_{T-1}^*$, $X\setminus \bigcup\{D_j|j\in J\}$ という 4 集合から成る $\mathfrak{M}=\{\bigcup\mathfrak{N}_{T-1}^*,M_T\}$ の star refinement と考える。

更に、今まさに作成した、 \mathbf{m}^* と \mathbf{n}_{T-1}^* との間の intersection covering(それぞれ cover すべき範囲を前者は X とし後者は $\bigcup \{D_j|j\in J\}$ として異なるが)を考えると、これは \mathbf{m} と \mathbf{n}_{T-1}^* の intersection covering の、従って、特に \mathbf{n}_{T-1}^* の(cover すべき範囲を $\bigcup \{D_j|j\in J\}$ とした)star refinement である。これを \mathbf{n}^* と名付ける。この star refinement \mathbf{n}^* に、そもそも \mathbf{n}^* の要素であった $X\setminus\bigcup\{D_j|j\in J\}$ を付け加えたものを \mathbf{n}_T^* とする。

 \mathfrak{N}_T^* が、求める $\{M_0, M_1, \ldots, M_T\}$ の star refinement であることを示す。まずこれが X の covering であることは、 \mathfrak{N}_* の cover すべき範囲が $\bigcup \{D_j | j \in J\}$ であること、そしてそれに C_T を付け加えると X の covering であることから明らかである。またこれが \mathfrak{M} の star refinement でなくなる可能性は、(明らかに \mathfrak{N}^* が \mathfrak{N}_{T-1}^* の、従って M_0, \ldots, M_{T-1} の star refinement であることから)最後に付け加えた $X \setminus \bigcup \{D_j | j \in J\}$ によって生ずる可能性だけである。しかし、最後に付け加えたものと intersection を持つとすれば、それは \mathfrak{M}^* の作り方から、その(第三番目に並べられた)要素 int $(C_T) \cap \bigcup \mathfrak{N}_{T-1}^*$ の subset として \mathfrak{N}^* に入っているものに限られる。従って、そのユニオンを取っても、 C_T すなわち M_T の subset となることが分かる。