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Abstract

The aim of this paper is to develop fixed point theorems in Hausdorff topological vector s-
paces that are suitable for the purpose of economic equilibrium theory. The special concept we
have used here is the “direction structure” that characterizes mappings in the economic theory,
(preferences, excess demands, and the like,) adequately, and enables us to modify problems on
mappings into those on a structure of the base set. Especially, since our mathematical gener-
alization may directly be related to the continuity and/or convexity of individual preferences,
we may obtain existence theorems of maximal points, Pareto optimal allocations, and price
equilibria for Gale-Nikaido-Debreu abstract economies under quite natural conditions.

Keywords : Fixed point theorem, Non-ordered Preference, Direction structure, Gale-Nikaido-
Debreu theorem, Market equilibrium.
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1 INTRODUCTION

In the economic theory, fixed point theorem is one of the most important mathematical tools that

enable us to construct the concept of economic equilibria. Under the earliest formulation as in Arrow

and Debreu (1954), Nikaido (1956), etc., the economic equilibrium was treated as a fixed point of a

continuous mapping constructed by continuous excess demands and price formation functions. The

problem was lately reformulated as a general coincidence property for restriction and preference

correspondences including cases with non-ordered preferences (c.f. Shafer and H.F.Sonnenschein

(1975), Gale and Mas-Colell (1975)).

In this paper, we prove fixed point theorems and theorems on economic equilibria under weak

conditions on local directions of mappings in Hausdorff topological vector spaces. Our general-

ization directly aims to support a weak condition on the convexity and continuity of preference

correspondences for the existence of economic equilibria.

Results in this paper are based on recent researches in Urai (2000), Urai and Hayashi (2000),

and Urai and Yoshimachi (2002) on fixed point theorems for multi-valued mappings and econom-

ic equilibria in Hausdorff topological vector spaces. We have developed here a way to generalize
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them by using more essential mathematical structure defining a notion of “directions” in topological

vector spaces. The notion enables us to characterize mappings in economics (especially, preference

mappings,) adequately, and to modify problems on properties of such mappings into problems on

properties of spaces. Continuity for the direction of set valued mappings may be reduced into topo-

logical features for the direction structure of spaces, and the generalization of continuity condition

for the existence of fixed points as in Urai (2000) may be reformulated here as a generalization of

conditions for a subset of vector spaces on which all continuous functions have fixed points.

In this paper, we apply these results to general existence theorems of maximal points, Pareto

optimal allocations, and price equilibria for an abstract economy of the Gale-Nikaido-Debreu type.

The result may also be applied to the existence of equilibrium for an abstract economy of the

Arrow-Debreu type with (possibly) non-ordered, non-convex, and/or non-continuous preferences

and constraint correspondences in Hausdorff topological vector spaces which may not necessarily be

locally convex.1

2 FIXED POINT THEOREMS

In this section, we define a structure on a topological vector space which generalizes some concepts

included in our ordinary usage of the word a “direction” for a vector, and we show a fixed point

theorem depending merely on local conditions for such directions associated with a mapping without

using the concept of continuity and/or convexity. Moreover, the structure is also used to describe

a weaker condition on a subset of vector spaces under which every continuous function has a fixed

point.

Let E be a Hausdorff topological vector space over the real field R, and let X be a subset of E.

We define a structure which represents the set of points in direction y−x at x in X for each x, y ∈ X

as follows. For each pair (x, y) of an element of X × X , define a subset V (x, y) of X satisfying:

(A0) ∀x, y ∈ X , V (x, y) is a convex subset of X .

(A1) ∀x, y ∈ X , x /∈ V (x, y),

(A2) ∀x, y, z ∈ X , (z ∈ V (x, y)) → (y ∈ V (x, z)).2

We call the set V (x, y) ⊂ X the set of points in direction y − x at x, or simply, the set of direction

y from x, and we say that X has a direction structure V .3

An example for such a structure is obtained by using the inner product. When the inner product

is defined on E, we may define the inner product direction structure, V on X ⊂ E, as V (x, y) =

{z ∈ X |〈y − x, z − x〉 > 0}.4 For a vector space E with an algebraic dual E∗, we may also define V

on X ⊂ E as V (x, y) = {z ∈ X |p(x, y)(z −x) > 0∧ p(x, z)(y−x) > 0} whenever p : X ×X → E∗ is

a mapping such that p(x, x) = 0 for all x ∈ X . Another example may be obtained when there is a

correspondence ϕ : X → X such that x /∈ coϕ(x) for all x ∈ X \ K, where K = {x ∈ X |x ∈ ϕ(x)}

is the fixed point set of ϕ.5 In this case, we may define direction structure Vϕ on X ⊂ E as

1See also Urai-Yoshimachi(2002) for a similar result based on Urai-Hayashi (2000), where a direction of mapping
is treated as an element of the dual space of a locally convex base space.

2Condition (A2) may be replaced with a weaker condition (A2’) ∀x, y, z ∈ X, (w ∈ V (x, y) ∩ V (x, z)) → (∀λ ∈
[0, 1], w ∈ V (x, λy + (1 − λ)z)). Note that under (A1) and (A2), V (x, x) = ∅ for all x ∈ X.

3The similar notion has already been treated in Urai (2000) [Concluding Remarks].
4Throughout this paper, we denote by 〈·, ·〉 the vector space duality operation including the inner product.
5The notation co A denotes the convex hull of A.
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Vϕ(x, y) = X ∩ coϕ(x), if x ∈ X and y ∈ co ϕ(x), else Vϕ(x, y) = ∅. We call direction structure Vϕ

the direction structure induced by ϕ on X .

Suppose that X has a direction structure, V : X × X → X . We say that a correspondence

(possibly empty valued) ϕ : X → X has a locally common direction yx at x (under V ) if there exists

an open neighbourhood U(x) of x such that ϕ(z) ⊂ V (z, yx) for all z ∈ U(x). Based on the direction

structure, we have the following fixed point theorem.

Theorem 1 : (Fixed Point Theorem for Mappings Having Locally Common Directions) Let X be a

non-empty compact convex subset of Hausdorff topological vector space E having direction structure

V , and let ϕ : X → X be a non-empty valued correspondence. Suppose that ϕ has a locally common

direction under V at every x such that x /∈ ϕ(x). Then, ϕ has a fixed point.

Proof : Assume that ϕ has no fixed point. Then, ϕ has a locally common direction at each x ∈ X .

Since X is compact, we have points x1, · · · , xn ∈ X , open neighbourhoods U(x1), · · · , U(xn) of each

x1, · · · , xn in X such that
⋃n

t=1 U(xt) ⊃ X , together with points yx1

, · · · , yxn

∈ X satisfying for

each t = 1, · · · , n, ϕ(z) ⊂ V (z, yxt

) for all z ∈ U(xt). Let βt : X → [0, 1], t = 1, · · · , n, be a partition

of unity subordinated to U(x1), · · · , U(xn). Let us define a function f on D = co {yx1

, · · · , yxn

} to

itself as f(x) =
∑n

t=1 βt(x)yxt

. Then, f is a continuous function on the finite dimensional compact

set D to itself. Hence, f has a fixed point z∗ = f(z∗) =
∑n

t=1 βt(z
∗)yxt

by Brouwer’s fixed point

theorem. On the other hand, for all t such that z∗ ∈ U(xt), (i.e., βt(z
∗) > 0,) ϕ(z∗) ⊂ V (z∗, yxt

), so

that (by condition (A2)) for an element y∗ ∈ ϕ(z∗) arbitrarily fixed, we have yxt

∈ V (z∗, y∗) for all

t such that βt(z
∗) > 0. Since V (z∗, y∗) is convex, we have z∗ =

∑n
t=1 βt(z

∗)yxt

∈ V (z∗, y∗), which

contradicts the fact z∗ /∈ V (z∗, y∗) under condition (A1).

Every non-empty convex valued correspondence having open lower sections, ϕ : X → X , has a

locally common direction at each x such that x /∈ ϕ(x) under the direction structure induced by ϕ.

Hence, by considering the induced direction structure, the above theorem may be considered as an

extension of Browder’s fixed point theorem (c.f., Browder (1968)). The theorem also includes one

of the main fixed point theorems in Urai (2000) (Theorem 1 (K∗)). In the following, by using the

concept of direction structure, we further extend the result to more general cases with mappings

having locally “continuous” directions.6

We say that a direction structure, V : X × X → X , is lower topological on a certain subset

A ⊂ X × X if the following (A3) is satisfied.7

(A3) For all (x, y) ∈ A, V (x, y) 6= ∅ implies that ∃W (x, y), an open neighbourhood of (x, y) ∈

A ⊂ X × X such that
⋂

(z,w)∈W (x,y) V (z, w) 6= ∅.

A correspondence ϕ : X → X is said to have a locally continuous direction at x (under a structure

V ) if there exists an open neighbourhood U(x) and a continuous function y : U(x) → X such that

ϕ(z) ⊂ V (z, y(z)) for all z ∈ U(x).

6The difference is important especially when values of mappings are closed, e.g., if f : X → X is single valued,
under the induced direction structure, f fails to have a locally common direction as long as it is not locally constant,
though f always has a continuous direction as long as it is continuous.

7Indeed, the following is nothing but a condition for the lower section of the correspondence V , i.e., for each
V (x, y) 6= ∅ there is at least one element whose lower section is a neighbourhood of (x, y).
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Theorem 2 : (Fixed Point Theorem for Mappings Having Locally Continuous Directions I) Let X be

a non-empty compact convex subset of Hausdorff topological vector space E having lower topological

direction structure V on X×X, and let ϕ : X → X be a non-empty valued correspondence. Suppose

that ϕ has a locally continuous direction (under V ) at every x such that x /∈ ϕ(x). Then, ϕ has a

fixed point.

Proof : Assume that ϕ has no fixed point. Then, ϕ has a locally continuous direction yx :

U(x) → X , ϕ(z) ⊂ V (z, yx(z)) for all z ∈ U(x) at each x ∈ X . Since X is compact, we have finite

points x1, · · · , xn ∈ X , open neighbourhoods U(x1), · · · , U(xn) of each x1, · · · , xn in X such that
⋃n

t=1 U(xt) ⊃ X , together with continuous functions yx1

: U(x) → X, · · · , yxn

: U(x) → X satisfying

for each t = 1, · · · , n, ϕ(z) ⊂ V (z, yxt

(z)) for all z ∈ U(xt). Let βt : X → [0, 1], t = 1, · · · , n, be

a partition of unity subordinated to U(x1), · · · , U(xn). Let us define a function f on X to itself

as f(x) =
∑n

t=1 βt(x)yxt

(x), where yxt

(x) denotes 0 for each x /∈ U(xt). Then, f is a continuous

function on X to itself. Since ∅ 6= ϕ(z) ⊂ V (z,
∑n

t=1 βt(z)yxt

(z)) for all z ∈ X , by defining Φ(z)

as Φ(z) = V (z, f(z)), the mapping Φ : X → X is non-empty valued and z /∈ Φ(z) for all z ∈ X .

Moreover, by (A3) and by the continuity of f , Φ has a locally common direction at each x ∈ X .

Hence, by Theorem 1, Φ has a fixed point, so that we have a contradiction.

When the topology on a vector space is given by the inner product, the inner product direction

structure, V (x, y) = {z|〈z−x, y−x〉 > 0}, is lower topological. Hence, the theorem gives a sufficient

generality for finite dimensional cases under the inner product direction structure. The following

corollary which is an immediate consequence of the above argument shows one of the most interesting

(and important) features of our theorem. Note that no continuity and no convexity are assumed on

mapping P except for those on the function, d.8

Corollary 2.1 : Let X be a non-empty compact convex subset of Rn and let P : X → X be a

correspondence having continuous direction d : X → X under the Euclidean inner product direction

structure, i.e., D(x) · (y − x) > 0 for all y ∈ P (x), where D(x) = d(x) − x for each x ∈ X. Then,

there is a point x such that P (x) = ∅.9

Proof : Note that P has no fixed point since D(x) · (y − x) > 0 for all y ∈ P (x) for all x ∈ X . If

P is non-empty valued, however, under the inner product direction structure, P has a fixed point

x∗ by Theorem 2.

A slight modification of the above theorem into the case with single valued mapping will be useful

in the later. (Note that the next corollary is trivial when the topology on space E is locally convex

by the fixed point theorem of Schauder-Tychonoff.)

Corollary 2.2 : (Fixed Point Theorem for a Continuous Mapping I) Let X be a non-empty

compact convex subset of Hausdorff topological vector space E and let f : X → X be a continuous

function. Suppose that there is a direction structure V on X such that f(x) ∈ V (x, f(x)) at each

x 6= f(x) and V is lower topological on the graph of f . Then, f has a fixed point.

8For the Euclidean inner product in Rn, we write x · y instead of 〈x, y〉.
9In view of economics, above D(x) may be interpreted as a generalized concept for the continuous first derivative

of a utility function.

4



Proof : Assume the contrary. Then, the mapping Φ(x) = V (x, f(x)) on X to X is non-empty

convex valued. Moreover, Φ has a locally common direction at each x ∈ X since f is continuous

and (A3) is satisfied at each (x, f(x)). Hence, Φ has a fixed point by Theorem 1, so that we have a

contradiction.

By reading the proof of Theorem 2 or Corollary 2.2, one can see that the lower topological

property, (A3), is nothing but a sufficient condition for cases with locally “continuous” directions to

be reduced to cases with locally “common” directions in Theorem 1. Unfortunately, however, except

for the above inner product cases, there seems to be no obvious way to define a direction structure

which is lower topological on X ×X . Even for cases such that E together with the topological dual

E′ forms the duality, and V (x, y) = {z ∈ X |〈p(x, y), z −x〉 > 0}, where p is a function on X ×X to

E′, defines a direction structure, we should induce a compact convergence topology on E ′ since for

V to be lower topological, we have to assure the duality operation, 〈·, ·〉 to be jointly continuous.10

For fixed point arguments in more general topological spaces, it is more desirable to use the

following alternative condition, (A4), to (A3).11 We say that a direction structure, V : X×X → X ,

is upper topological on a certain subset A ⊂ X × X if the following (A4) is satisfied.12

(A4) For all (x, y) ∈ A, if V (x, y) 6= ∅, then there are two neighbourhoods Ux of x and U ′

y of

y in X such that Ux ∩ coU ′

y = ∅.

See Figure 1. We are considering the case that the space E may not be locally convex, so that there

w w
x

y

Figure 1: Condition (A4)

may not exist a convex neighbourhood base at each point. Condition (A4) has its meaning only for

cases with V (x, y) 6= ∅. If we do not allow V (x, y) to have empty value as long as x 6= y, then a typical

condition assuring (A4) is that for each x, y, x 6= y, V (x, y) includes at least one neighbourhood of

y. Hence, (A4) is typically a condition for the upper section of the correspondence, V .13 Now we

have the following theorem.

10Under the compact convergence topology on E ′, however, we further generalize our results to the case with
mappings having compact valued upper semicontinuous directions. See, Urai-Yoshimachi (2002).

11Of course, it is not saying that condition (A4) is more general than condition (A3). Indeed, in the proof of next
theorem, (A4) is used as a sufficient condition for the space to have a certain lower topological direction structure.

12As stated below, the condition is closely related to a property for the upper section of the correspondence, V .
13In such a case, by considering V (z, x) and V (z, y) for z = (x + y)/2, we have two disjoint convex neighbourhoods

of x and y for each x 6= y. Note, however, that the whole space, E, may not be locally convex even in such cases. For
an example, consider `p for 0 < p < 1.
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Theorem 3 : (Fixed Point Theorem for Mappings Having Locally Continuous Directions II) Let

X be a non-empty compact convex subset of Hausdorff topological vector space E having upper

topological direction structure V on X×X, and let ϕ : X → X be a non-empty valued correspondence.

Suppose that ϕ has a locally continuous direction (under V ) at every x such that x /∈ ϕ(x). Then,

ϕ has a fixed point.

Proof : As in the proof of Theorem 2, assume that ϕ has no fixed point, and obtain the continuous

function f : X → X . Note that the non-emptiness of V (x, f(x)) for all x ∈ X means that f has no

fixed point. Let A ⊂ X ×X be the graph of f . On A, we modify the direction structure V into V ′

as follows. For each (x, f(x)) ∈ A, V (x, f(x)) 6= ∅ implies (under (A4)) that there are two disjoint

neighbourhoods, Ux and U ′

f(x), of x and f(x) such that Ux ∩ coU ′

f(x) = ∅. Hence, by the continuity

of f , there is an open neighbourhood Ox ⊂ Ux of x such that for all z ∈ Ox, f(z) ∈ U ′

f(x) and

Ox ∩ coU ′

f(x) = ∅. Moreover, since for a vector space topology it is always possible to take a closed

neighbourhood base, Ox may be chosen so that there are two neighbourhoods of f(x) in X , U 1
f(x),

C1
f(x), satisfying:

(1) int U ′

f(x) ⊃ U1
f(x) ⊃ C1

f(x),
14

(2) U1
f(x) is open and C1

f(x) is closed (i.e., compact) in X ,

(3) ∀z ∈ Ox, z + (U ′

f(x) − x) ⊃ U1
f(x),

(4) ∀z ∈ Ox, f(z) ∈ C1
f(x),

(5) Ox is closed in X .

Indeed, by the property of vector space topology, we may chose a circled 0 neighbourhood U in E

so that (U +U)∩X ⊂ U ′

f(x)−f(x).15 Then, by taking Ox so small that Ox ⊂ x+U , we have for all

z ∈ Ox ⊂ x+U , ((x−z)+U)∩X ⊂ (U +U)∩X ⊂ U ′

f(x)−f(x), i.e., (f(x)+U)∩X ⊂ z+(U ′

f(x)−x).

Hence, by setting U1
f(x) = (f(x) + int U) ∩ X and choosing Ox ⊂ (x + int U) ∩ X , (1),(2),(3) are

satisfied. For conditions (4) and (5), chose C1
f(x) ⊂ U1

f(s) as an arbitrary closed neighbourhood of

f(x) and redefine a closed Ox (smaller than before) by considering the continuity of f . On each Ox,

define V x(z, f(z)) as (z + (int (co U ′

f(x)) − x)) ∩ X ⊃ U1
f(x) ⊃ C1

f(x) ⊃ f(Ox). Since X is compact,

there are finite points x1, . . . , xm such that Ox1 , . . . , Oxm covers X . For each (x, f(x)) ∈ A, let

V ′(x, f(x)) =
⋂

t∈I(x)

V xt

(x, f(x)),

where I(x) 6= ∅ denotes the subset of {1, 2, . . . , m} such that (t ∈ I(x)) ⇐⇒ (x ∈ Oxt). V ′(x, f(x))

is non-empty since (t ∈ I(x)) ⇐⇒ (x ∈ Oxt) =⇒ (f(x) ∈ C1
f(xt)). Moreover, by defining

V ′(x, y) = ∅ for all y /∈ V ′(x, f(x)), V ′ is a direction structure which is lower topological on

X × X . Indeed, for each (z, f(z)), let Iz be the set of index t such that z ∈ Oxt . Then, by

defining W 1 as a neighbourhood of z in X such that W 1 does not intersect Oxt for all t /∈ Iz ,

and W 2 as
⋂

t∈Iz
U1

f(xt), W 1 and W 2 are open neighbourhoods of z and f(z), respectively, and for

W = W 1 × W 2,
⋂

(x,y)∈W V ′(x, y) 3 f(z). This, together with the openness for the value of V ′,

14Notation int A denotes the interior of A. In this proof, all interiors are taken with respect to the topology on the
whole space, E.

15See Schaefer (1971) [p.14, Theorem 1.2].
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implies that V ′ satisfies condition (A3). Hence, f has a fixed point by Corollary 2.2. Since f has

no fixed point, we have a contradiction.

An important corollary to the above theorem is the case that the mapping ϕ is a continuous

function f : X → X . In this case, we are able to rewrite the condition with more familiar concepts

without an essential loss in generality.

Corollary 3.1 : (Fixed Point Theorem for a Continuous Mapping II) Let X be a non-empty

compact convex subset of Hausdorff topological vector space E such that

(T) every two different points, x 6= y, in E has two disjointed neighbourhoods, Ux ∩ Uy = ∅,

at least one of which is convex.

Then, every continuous function, f : X → X, has a fixed point.

Proof : Note that in this proof, condition (T) is used merely for pairs of points on the graph of f ,

i.e., x and f(x) such that x 6= f(x). Assume that f has no fixed point. Then, for each (x, f(x)) ∈

X ×X , x and f(x), respectively, have neighbourhoods, Ux and Uf(x), such that Ux ∩Uf(x) = ∅ and

at least one of which is convex. Since the topology of vector space is translation invariant, we may

suppose Uf(x) is convex without loss of generality. Hence, by defining V (x, f(x)) = Uf(x) for each

x ∈ X and V (x, y) = ∅ for each x and y /∈ Uf(x), we obtain a direction structure which is upper

topological on X × X . Since f has a continuous direction under V at everywhere, f has a fixed

point by Theorem 3, so that we have a contradiction.

The above condition, (T), is automatically satisfied when the topology on E is locally convex.

The converse is not true, i.e., there is a topological vector space whose topology is not locally convex

but satisfies condition (T).16 Hence, Corollary 3.1 is an extension of Schauder-Tychonoff’s fixed

point theorem. Since our main purpose is a generalization of the continuity condition for set valued

mappings, it seems that there is no advantage in our approach for cases with continuous functions.

The above corollary suggests, however, that our characterization of mappings under the direction

structure seems to exhaust all the essential features in the notion of continuity at least for fixed

point arguments.

As an important result for cases with set valued mappings, we show the following corollary. Also in

this result, we reformulate our concept into more familiar notion, the existence of (locally definable)

continuous selections.

Corollary 3.2 : (Fixed Point Theorem for Mappings Having Continuous Local Selections) Let X

be a non-empty compact convex subset of Hausdorff topological vector space E satisfying condition

(T), and let ϕ : X → X be a non-empty convex valued correspondence. If ϕ has, locally, a continuous

selection at each x ∈ X such that x /∈ ϕ(x), then ϕ has a fixed point.

Proof : Suppose that ϕ has no fixed point. Then, for each x ∈ X , there is an open neighbourhood

Ux of x and a continuous function fx : Ux → X such that fx(z) ∈ ϕ(z) for all z ∈ Ux. Since X is

compact there are finite covering Ux1 , . . . , Uxm and local selections, fx1

, . . . , fxm

. Let αt : Uxt →

[0, 1], t = 1, . . . , m be the partition of unity subordinated to the finite covering. Then, f : X → X

16A simple example is the space `p for 0 < p < 1 under the pseudo `p-norm, ‖(xi)
∞
i=1

‖ =
∑∞

i=1
|xi|

p.
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defined as f(x) =
∑m

t=1 αt(x)fxt

(x), where fxt

(x) for x /∈ Uxt is defined as 0, is a continuous

selection of ϕ since ϕ is convex valued. Then, by Corollary 3.1, f has a fixed point, so that ϕ has a

fixed point, a contradiction.

In the above proof, if ϕ has a special type of local continuous selections, local selections of constant

functions, (e.g., if ϕ has an open lower section at everywhere), then condition (T) will be omitted.

Indeed, for such a case, the range of f is finite dimensional, so that Brouwer’s fixed point theorem

is sufficient for f to have a fixed point. The situation is completely the same when the range of each

local continuous selection is not a single point (constant function) but a subset of finite dimensional

space. This may also be considered as a corollary to the case that we have treated in Theorem 1

as the locally common direction. But we shall write it here as the most simple case of the previous

corollary.

Corollary 3.3 : (A Generalization of Browder’s Theorem) Let X be a non-empty compact convex

subset of Hausdorff topological vector space E, and let ϕ : X → X be a non-empty convex valued

correspondence. If ϕ has, locally, a continuous selection whose range is a subset of finite dimensional

subspace at each x ∈ X such that x /∈ ϕ(x). Then, ϕ has a fixed point.

Proof : As stated above, since the range of each fxt

, fxt

(Uxt) in the proof of the previous corollary

is in a finite dimensional subspace Lt of E, the range of f is also in a finite dimensional subspace

L =
∑m

t=1 Lt of E. Hence, the function, f , restricted on L∩X has a fixed point by Brouwer’s fixed

point theorem, so that we have a contradiction.

These corollaries shows that there may exist a trade-off between the generality for the vector space

topology on the base set and the variety of mappings to which we want to show the existence of

fixed points. Our approach, however, also suggests that the concept of direction structure brings

about a unified view point on these topologies and mappings. For example, compare Corollary 2.2

and Corollary 3.1. In Corollary 3.1, the condition for the direction structure is completely described

as a property on the topological vector space, Condition (T). On the contrary, in Corollary 3.1, the

condition is described, completely, as a property for the mapping f .

3 THEOREMS ON ECONOMIC EQUILIBRIA

In this section, we apply fixed point theorems in the previous section to several problems in the

economic equilibrium theory.

Let P : X → X be a (possibly empty valued) correspondence on a subset X of a topological

vector space E to itself. Assume that P satisfies

(Irreflexivity) ∀x ∈ X , x /∈ P (x).

In the following, we regard X as an individual choice set and P (x) ⊂ X as the set of points which

are preferred to x for each x ∈ X . Then, an element x∗ ∈ X may be interpreted as a maximal

element for the preference correspondence, P , if P (x∗) = ∅.

In the previous section, we have seen in Corollary 2.1 that a fixed point theorem may easily be

modified to the existence theorem on maximal elements. I.e., the existence of maximal elements

8



for an irreflexive mapping may be considered as a contrapositive assertion to the existence of fixed

point for a non-empty valued correspondence. Since in the maximal element existence problem,

mapping P directly represents the individual preferences, the importance of our generalization of

mappings for fixed point theorem (in the previous section) should be measured by the generality for

a representation of our general preferences.

We emphasize that as a condition for the preference, “better sets have locally similar directions”

is not only mathematically general but also intuitively natural. It is far more natural than the

continuity. Moreover, there are many concrete examples that may not be treated in the standard

argument but may be treated in our scope. For example, there is an important sort of ordered

preferences that are not continuous to fail to have open lower sections, the lexicographic ordering.

There also exists an important sort of ordered and continuous preferences that are not complete to

fail to have open lower sections (consider the relation ≤ in Rn representing the strict monotonicity

at each point). (See Figure 2. In each case, the better set at x is denoted by the shaded area. )
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Figure 2: Lexicographic Orderings and Orderings in Vector Spaces

We write here a generalized version of Corollary 2.1, a theorem on the existence of maximal

elements, whose assumptions are taken as weak as possible from the economic view point. Preceding

the theorem, we describe several basic settings for the economic equilibrium arguments.

(B0) [Basic Settings for the Economic Equilibrium Theory]: Let E be a Hausdorff topological

vector space, X be a compact subset of E, and E ′

X be a convex subset of the set of linear

functionals on E, E∗, having a Hausdorff vector space topology such that the closure D of E ′

X

in E∗ is compact, and the restriction of bilinear form 〈p, x〉 on E ′

X ×X is jointly continuous.17

We shall use above basic settings, repeatedly, throughout this section.

17The assumed property for the bilinear form may be satisfied under the standard situation for the commodity-price
duality in economic equilibrium theory. For example, given a duality (E,F ), suppose that E has the Mackey topology
τ(E,F ) and E′

X
is a dense subset of a σ(F, E) compact subset D of F . The joint continuity for the bilinear form has

an economic meaning that we are considering the situation in which with simultaneous small changes in prices and
amounts for commodities associate small changes in their total values.

9



Theorem 4 : (Existence of Maximal Elements) Under (B0), suppose that P : X → X is a (possibly

empty valued) correspondence such that for each x ∈ X, there is a neighbourhood Ux of x and an

upper semicontinuous compact valued correspondence θx : Ux → E′

X satisfying that 〈p, w − z〉 > 0

for all p ∈ θ(z), w ∈ P (z), and z ∈ Ux as long as P (x) 6= ∅. Then, there is a maximal element

x∗ ∈ X, P (x∗) = ∅.

Proof : Assume the contrary. Then, for all x ∈ X , there is a neighbourhood Ux of x and an upper

semicontinuous correspondence θx : Ux → E′

X satisfying that 〈p, w − z〉 > 0 for all p ∈ θ(z) and

w ∈ P (z). Since X is compact, there is a finite covering Ux1 , . . . , Uxm of X , so that by using the

partition of unity αt : Uxt → [0, 1], t = 1, . . . , m subordinated to Ux1 , . . . , Uxm , we obtain an upper

semicontinuous correspondence θ : X → E ′

X as

θ(x) =

m∑

t=1

αt(x)θxt(x),

where θxt(x) is defined to be {0} for all x /∈ Uxt . Since θ : X → E′

X is upper semicontinuous and

compact valued, and since the bilinear form 〈·, ·〉 on X × E ′

X is jointly continuous, the direction

structure V (x, y) on X defined by V (x, y) = {w ∈ X |〈p, w − x〉 > 0} if y ∈ {w ∈ X |〈p, w − x〉 > 0},

else V (x, y) = ∅, is lower topological and P has a locally fixed direction at each x ∈ X under V .

Hence, by Theorem 2, P has a fixed point. Since 〈p, w − z〉 > 0 for all p ∈ θ(z), w ∈ P (z), and

z ∈ Ux as long as P (x) 6= ∅, P cannot have a fixed point, so that we have a contradiction.

We next consider the problem on the existence of maximal elements among many agents, i.e., the

social optima. Adding to (B0), we use the following settings:

(B1) [Consumers and Producers]: Let X1,. . . ,Xm and Y1,. . . ,Yn be compact convex subsets

of X . Moreover, let ω1,. . . ,ωm are points in E such that
∑m

i=1 Xi ∩ (
∑n

j=1 Yj +
∑m

i=1 ωi) 6= ∅.

We call the set Alloc =
∏m

i=1 Xi the set of allocations (for consumers) and the set Falloc =

{((xi)m
i=1) ∈ Alloc|

∑m

i=1 xi =
∑n

j=1 yj +
∑m

i=1 ωi, (yj)n
j=1 ∈

∏n

j=1 Yj} the set of feasible alloca-

tions. Under (B1), we see that Falloc is a non-empty compact convex subset of Alloc.

Together with (B0) and (B1), let us assume that for each i = 1, . . . , m, there are two correspon-

dences Pi : Alloc → Xi and P̃i : Alloc → Xi, the strong and weak preference correspondences,

respectively, satisfying that ∀x = (x1, . . . , xm) ∈ Alloc, xi /∈ Pi(x) (the irreflexivity), xi ∈ P̃i(x)

(the reflexivity), and Pi(x) ⊂ P̃i(x). Then, let us define a correspondence, P : Alloc → Alloc, as

follows:

P (x) = {w = (w1, . . . , wm)|∀i, wi ∈ P̃i(x) and ∃i, wi ∈ Pi(x)}

For allocations x, y ∈ Alloc, y is said to be Pareto superior to x if and only if the condition

y ∈ P (x) is satisfied. It is easy to check that for all z ∈ Alloc, z /∈ P (z), i.e., P : Alloc → Alloc

is an irreflexive correspondence. A feasible allocation x ∈ Falloc is said to be Pareto optimal if

P (x) ∩ Falloc = ∅. The next theorem shows that the existence of Pareto optimal allocations may

be assured even for cases with non-ordered, non-convex, and non-continuous individual preferences.

Note that the necessary condition for individual preferences to assure the existence of social optima

(Pareto optimal allocations), (D), is essentially the same as the necessary condition for the existence

of individual optima (maximal elements) in Theorem 4.
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Theorem 5 : (Existence of Pareto Optimal Allocations) Assume that for each i = 1, . . . , m, Pi and

P̃i satisfies the following conditions for directions of mappings.

(D) For each x ∈ Alloc, (resp., for each x ∈ Alloc such that Pi(x) 6= ∅), there are a neighbour-

hood Ux of x and an upper semicontinuous compact valued correspondence θi
x : Ux → E′

X such

that 〈p, wi − zi〉 ≥ 0 (resp., 〈p, wi − zi〉 > 0 ) for all p ∈ θi
x(z), wi ∈ P̃i(z), (resp., wi ∈ Pi(z)),

and z = (z1, . . . , zm) ∈ Ux.

Then, there is a Pareto optimal allocation.

Proof : Assume the contrary. Then, the correspondence PF : Falloc 3 x 7→ P (x) ∩ Falloc is

non-empty valued. By condition (D) and the compactness of Alloc, through the argument using

the partition of unity, we obtain an upper semicontinuous compact valued correspondence θi :

Alloc → E′

X for each i such that ∀z ∈ Alloc and ∀p ∈ θi(z), (wi ∈ P̃i(z)) → (〈p, wi − zi〉 ≥ 0) and

(wi ∈ Pi(z)) → (〈p, wi − zi〉 ≥ 0)). For each i and z ∈ Alloc, denote by P̂i(z), (resp., ˆ̃P i(z)), the

set {wi ∈ Xi|∀p ∈ θi(z), 〈p, wi − zi〉 > 0}, (resp., the set {wi ∈ X1|∀p ∈ θi(z), 〈p, wi − zi〉 ≥ 0}).

Clearly, for each i and z ∈ Alloc, P̂i(z) ⊃ Pi(z) and ˆ̃P i(z) ⊃ P̃i(z). Since P̂i(z) is open, and

since the sum operation is continuous, the non-emptiness of PF means that for each w ∈ Falloc,

there is an neighbourhood Ow in Falloc and an index of consumer i(w) such that for each z ∈ Ow,

there is an element y = (y1, . . . , ym) ∈ Falloc such that yi(w) ∈ P̂i(w)(z). Since Falloc is compact,

there is a finite covering Ow1 , . . . , Owk of Falloc and the partition of unity, αt : Owt → [0, 1],

t = 1, . . . , k, subordinated to it. Let us define a correspondence on Falloc to Falloc, Φ as, for each

z = (z1, . . . , zm) ∈ Falloc,

Φ(z) = z + αt(z)(Φ(z)t − z), where

Φt(z) = ˆ̃P 1(z) × · · · × ˆ̃P i(wt)−1(z) × P̂i(wt)(z) × ˆ̃P i(wt)+1 × · · · × ˆ̃P m(z) ∩ Falloc.

Φ is convex valued since each Φt is. Φ has non-empty valued since each Φt is non-empty valued as

long as PF is. Moreover, by defining θ(z) : Alloc → Alloc and Ψ : Falloc → Falloc, respectively, as

θ(z) = (θ1(z), . . . , θm(z)), and

Ψ(z) = {w ∈ Falloc|∀p ∈ θ(z), 〈p, w〉 > 0},

we have Φ(z) ⊂ Ψ(z), so that the correspondence, Ψ, is a non-empty convex valued on Falloc to

Falloc having no fixed point. Note that θ is also compact valued upper semicontinuous correspon-

dence on Alloc to E′

X
(m)

, where E′

X
(m)

denotes the m-th product of E ′

X . Then, for all w∗ ∈ Ψ(z∗),

there is an ε∗ > 0 such that 〈p, w∗〉 > ε∗ > 0 by the compactness of θ(z∗), hence, by the joint

continuity of the duality operation, (precisely, for each component,) there is a neighbourhood O∗ of

z∗ such that for all z ∈ O∗, w∗ ∈ Ψ(z). Therefore, Ψ has a locally continuous (fixed) selection at

each z, so that by Corollary 3.3, Ψ has a fixed point and we have a contradiction.

The set E′

X may be interpreted as the set of prices. For each price p ∈ E ′

X , we may define a non-

empty set of excess demands, ζ(p) ⊂ X , as the consequence of agents’ maximization behaviors.18

18Under (B0) and (B1), if we suppose the ordinary private ownership structure as in Debreu (1959), Theorem 4
clearly assures the non-emptiness for each agent’s optimal behaviors, ζ(p). Conditions (B2) and (B3) below may also
be satisfied. For condition (E) in the next theorem, however, we do not have such an individual preference foundation.
In this sense, it is more natural for us to consider the excess demand correspondence, p 7→ ζ(p), as a primitive notion
(the excess demand approach). Needless to say, condition (E) is more general than to assume the ordinary situation
such that the excess demand correspondence is compact convex valued and upper semi-continuous.
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If we add the following conditions for the excess demand correspondence, ζ, we may argue for the

market equilibrium and the existence of equilibrium prices.

(B2) [Walras’ Law]: For each p ∈ E ′

X , 〈p, z〉 = 0 for all z ∈ ζ(p).

(B3) If 0 /∈ ζ(p), there exists q ∈ E ′

X such that 〈q, z〉 > 0 for all z ∈ ζ(p).

Condition (B2) is always satisfied as long as every consumer satisfies their ordinary budget constraint

with equality. Condition (B3) says that the price set is taken to be sufficiently large so that we may

adjust any non-zero amount of excess demands. We say that the price p is adjusted by price q if

the relation in (B3), 〈q, z〉 > 0 for all z ∈ ζ(p), is satisfied. By (B2), p is not adjusted by p for all

p ∈ E′

X . A price, p∗ ∈ E′

X is said to be an equilibrium price if 0 ∈ ζ(p∗). Under (B3), a price p∗ is

an equilibrium price if and only if p∗ is not adjusted by q for all q ∈ E ′

X . The mathematical result

on the existence of equilibrium for this type of abstract settings is known as Gale-Nikaido-Debreu

theorem.19 In our general settings, the theorem may be extended as follows.

Theorem 6 : (Existence of Price Equilibrium) Assume (B0), and let us consider an excess demand

correspondence, ζ : E ′

X → X, satisfying (B2) and (B3). Moreover, suppose that on the closure D of

E′

X , condition (T) in Corollary 3.1 is satisfied, and that ζ has a continuous local direction at each

non-equilibrium point in the following sense.

(E) For each r in D, if r is not an equilibrium price, there is a neighbourhood Ur of r in D

and a continuous function qr : Ur → E′

X such that for all p ∈ Ur ∩ E′

X , 〈qr, z〉 > 0 for all

z ∈ ζ(p).

Then, there is an equilibrium price p∗ ∈ E′

X , 0 ∈ ζ(p∗).

Proof : Assume the contrary, so that there is no p ∈ E ′

X such that 0 ∈ ζ(p). (Note that the

closure, D, of E′

X in E∗ is compact and convex.) Then for all r in D, there is a neighbourhood

Ur of r in D and a continuous function qr : Ur → E′

X satisfying the condition stated above. Since

the closure of E′

X is compact, there are finite subcovering Ur1 , . . . , Urk of D. Let αt : Urt → X ,

t = 1, . . . , k be the partition of unity subordinated to Urt , t = 1, . . . , k. Then, the mapping f : D 3

r 7→
∑k

t=1 αt(r)qrt (r) ∈ D is continuous and has no fixed point since for all t such that p ∈ Urt ,

〈qrt , z〉 > 0 for all z ∈ ζ(p) though 〈p, z〉 should be 0 under (B2). Since condition (T) on D is

satisfied, f has a fixed point by Corollary 3.1, so that we have a contradiction.

In an extension of Gale-Nikaido-Debreu theorem, condition (E) may be considered as one of the

weakest requirements for the continuity of excess demand correspondences. Except for directions

of mappings, there is no topological requirement for the set of values at each point.20 It should

also be noted, however, that condition (E) includes the so called boundary condition for the excess

demand correspondence (on the boundary D \E ′

X of E′

X in E∗). As a boundary condition, (i.e., as

a condition for points r ∈ D \E ′

X ,) condition (E) may not be called the weakest one.21 There is an

19See, for example, Debreu (1956). For one of the most general treatments in locally convex space with acyclic
valued correspondences, see Nikaido (1957) and Nikaido (1959; Section 5.2).

20Of course, it is easy to check that every non-empty closed convex valued upper semicontinuous correspondence
satisfies condition (E).

21In condition (E), the boundary behavior is described for a neighbourhood of each boundary point. Boundary
conditions of the weakest type usually treat each boundary point independently. See, for example, Aliprantis and
Brown (1983), Mehta and Tarafdar (1987), etc. For a more general and unified treatment, see Urai (2000; Section 4).
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alternative way for assuring the existence of equilibrium prices under more general conditions for

boundary points, though requirements for the continuity in (E) should be strengthened.

If we write B(p) = {q ∈ E ′

X |∃z ∈ ζ(q), 〈p, z〉 ≤ 0} for each p ∈ E ′

X , (the set of price q which may

not be adjusted by price p), then the following (E’) (a slight modification of the continuity condition

in (E)) is a sufficient condition for B(p) to be a closed subset of E ′

X .

(E’) For each q in E′

X , if q is not an equilibrium price, there is a neighbourhood Uq of q in E′

X

and a point pq ∈ E′

X such that for all q′ ∈ Uq , 〈pq , z〉 > 0 for all z ∈ ζ(q′).

It is also easy to check that for each finite set p1, . . . , pk, co {p1, . . . , pk} ⊂
⋃k

t=1 B(pt). Hence, by

using Knaster-Kuratowski-Mazurkiewicz theorem together with the following boundary condition,

we also obtain the existence of equilibrium prices.

(B4) [Boundary Condition]: For all r in the boundary, ∂E ′

X , of E′

X ⊂ D and for all net

{pν , ν ∈ N} in E′

X converging to r, there are an element qr ∈ E′

X and a subnet {pν(µ), µ ∈ M}

of {pν , ν ∈ N} such that 〈qr, z〉 > 0 for all z ∈ ζ(pν(µ)) for all µ ∈ M.

In this case, the generality of the continuity condition (E’) together with the boundary condition

(B4) is essentially the same with the condition used in the market equilibrium existence theorem in

Urai (2000; Theorem 8).

It is also possible to apply theorems in the previous section and settings (B1), (B2) to the existence

of Nash equilibrium and Generalized Nash equilibrium for an abstract economy of the Arrow-Debreu

type. In such cases, we obtain various results on the existence of equilibrium with (possibly) non-

ordered, non-convex, and/or non-continuous preferences and constraint correspondences in Hausdorff

topological vector spaces. For some results, see Urai and Yoshimachi (2002).
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